On (global) unique continuation properties of the fractional discrete Laplacian

被引:1
作者
Fernandez-Bertolin, Aingeru [3 ]
Roncal, Luz [1 ,2 ,3 ]
Rueland, Angkana [4 ,5 ,6 ]
机构
[1] BCAM Basque Ctr Appl Math, Bilbao 48009, Spain
[2] Basque Fdn Sci, Ikerbasque, Bilbao 48011, Spain
[3] Univ Basque Country, Apartado 644, Bilbao 48080, Spain
[4] Heidelberg Univ, Inst Angew Math, Neuenheimer Feld 205, D-69120 Heidelberg, Germany
[5] Univ Bonn, Inst Appl Math, Endenicher Allee 60, D-53115 Bonn, Germany
[6] Hausdorff Ctr Math, Endenicher Allee 60, D-53115 Bonn, Germany
关键词
Fractional discrete Laplacian; Unique continuation properties; Carleman estimates; Stability properties; BOUNDARY-VALUE PROBLEM; LIPSCHITZ STABILITY; SCHRODINGER-OPERATORS; HARMONIC-FUNCTIONS; EXTENSION PROBLEM; CALDERON PROBLEM; NODAL SETS; EQUATIONS; THEOREM; APPROXIMATION;
D O I
10.1016/j.jfa.2024.110375
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study various qualitative and quantitative (global) unique continuation properties for the fractional discrete Laplacian. We show that while the fractional Laplacian enjoys striking rigidity properties in the form of (global) unique continuation properties, the fractional discrete Laplacian does not enjoy these in general. While discretization thus counteracts the strong rigidity properties of the continuum fractional Laplacian, by discussing quantitative forms of unique continuation, we illustrate that these properties can be recovered if exponentially small (in the lattice size) correction terms are added. In particular, this allows us to deduce stability properties for a discrete, linear inverse problem for the fractional Laplacian. We complement these observations with a transference prin ciple and the discussion of these properties on the discrete torus. (c) 2024 Elsevier Inc. All rights reserved.
引用
收藏
页数:64
相关论文
共 59 条
[41]  
Riesz M., 1938, Acta Sci. Math. Szeged, V9, P1
[42]  
Roncal L., 2014, Springer Proc. Math. Stat., V108, P203
[43]   Carleman type inequalities for fractional relativistic operators [J].
Roncal, Luz ;
Stan, Diana ;
Vega, Luis .
REVISTA MATEMATICA COMPLUTENSE, 2023, 36 (01) :301-332
[44]   A remark on a paper by Alessandrini and Vessella [J].
Rondi, L .
ADVANCES IN APPLIED MATHEMATICS, 2006, 36 (01) :67-69
[45]   ON SINGLE MEASUREMENT STABILITY FOR THE FRACTIONAL CALDERON PROBLEM [J].
Rueland, Angkana .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2021, 53 (05) :5094-5113
[46]   The fractional Calderon problem: Low regularity and stability [J].
Rueland, Angkana ;
Salo, Mikko .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 193
[47]   QUANTITATIVE APPROXIMATION PROPERTIES FOR THE FRACTIONAL HEAT EQUATION [J].
Rueland, Angkana ;
Salo, Mikko .
MATHEMATICAL CONTROL AND RELATED FIELDS, 2020, 10 (01) :1-26
[48]   Quantitative invertibility and approximation for the truncated Hilbert and Riesz transforms [J].
Rueland, Angkana .
REVISTA MATEMATICA IBEROAMERICANA, 2019, 35 (07) :1997-2024
[49]   LIPSCHITZ STABILITY FOR THE FINITE DIMENSIONAL FRACTIONAL CALDERON PROBLEM WITH FINITE CAUCHY DATA [J].
Rueland, Angkana ;
Sincich, Eva .
INVERSE PROBLEMS AND IMAGING, 2019, 13 (05) :1023-1044
[50]   Exponential instability in the fractional Calderon problem [J].
Rueland, Angkana ;
Salo, Mikko .
INVERSE PROBLEMS, 2018, 34 (04)