On (global) unique continuation properties of the fractional discrete Laplacian

被引:1
作者
Fernandez-Bertolin, Aingeru [3 ]
Roncal, Luz [1 ,2 ,3 ]
Rueland, Angkana [4 ,5 ,6 ]
机构
[1] BCAM Basque Ctr Appl Math, Bilbao 48009, Spain
[2] Basque Fdn Sci, Ikerbasque, Bilbao 48011, Spain
[3] Univ Basque Country, Apartado 644, Bilbao 48080, Spain
[4] Heidelberg Univ, Inst Angew Math, Neuenheimer Feld 205, D-69120 Heidelberg, Germany
[5] Univ Bonn, Inst Appl Math, Endenicher Allee 60, D-53115 Bonn, Germany
[6] Hausdorff Ctr Math, Endenicher Allee 60, D-53115 Bonn, Germany
关键词
Fractional discrete Laplacian; Unique continuation properties; Carleman estimates; Stability properties; BOUNDARY-VALUE PROBLEM; LIPSCHITZ STABILITY; SCHRODINGER-OPERATORS; HARMONIC-FUNCTIONS; EXTENSION PROBLEM; CALDERON PROBLEM; NODAL SETS; EQUATIONS; THEOREM; APPROXIMATION;
D O I
10.1016/j.jfa.2024.110375
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study various qualitative and quantitative (global) unique continuation properties for the fractional discrete Laplacian. We show that while the fractional Laplacian enjoys striking rigidity properties in the form of (global) unique continuation properties, the fractional discrete Laplacian does not enjoy these in general. While discretization thus counteracts the strong rigidity properties of the continuum fractional Laplacian, by discussing quantitative forms of unique continuation, we illustrate that these properties can be recovered if exponentially small (in the lattice size) correction terms are added. In particular, this allows us to deduce stability properties for a discrete, linear inverse problem for the fractional Laplacian. We complement these observations with a transference prin ciple and the discussion of these properties on the discrete torus. (c) 2024 Elsevier Inc. All rights reserved.
引用
收藏
页数:64
相关论文
共 59 条
[1]   Infinite-Dimensional Inverse Problems with Finite Measurements [J].
Alberti, Giovanni S. ;
Santacesaria, Matteo .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2022, 243 (01) :1-31
[2]   Lipschitz stability for the inverse conductivity problem [J].
Alessandrini, G ;
Vessella, S .
ADVANCES IN APPLIED MATHEMATICS, 2005, 35 (02) :207-241
[3]   Lipschitz stability for the electrostatic inverse boundary value problem with piecewise linear conductivities [J].
Alessandrini, Giovanni ;
de Hoop, Maarten V. ;
Gaburro, Romina ;
Sincich, Eva .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2017, 107 (05) :638-664
[4]  
[Anonymous], 1971, Introduction to Fourier analysis on Euclidean spaces (PMS-32)
[5]   Stability of an inverse problem for the discrete wave equation and convergence results [J].
Baudouin, Lucie ;
Eryedoza, Sylvain ;
Osses, Axel .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2015, 103 (06) :1475-1522
[6]   Nodal sets of Steklov eigenfunctions [J].
Bellova, Katarina ;
Lin, Fang-Hua .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 54 (02) :2239-2268
[7]   LIPSCHITZ STABILITY OF AN INVERSE BOUNDARY VALUE PROBLEM FOR A SCHRODINGER-TYPE EQUATION [J].
Beretta, Elena ;
de Hoop, Maarten V. ;
Qiu, Lingyun .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2013, 45 (02) :679-699
[8]   DISCRETE CARLEMAN ESTIMATES FOR ELLIPTIC OPERATORS IN ARBITRARY DIMENSION AND APPLICATIONS [J].
Boyer, Franck ;
Hubert, Florence ;
Le Rousseau, Jerome .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2010, 48 (08) :5357-5397
[9]   Discrete Carleman estimates for elliptic operators and uniform controllability of semi-discretized parabolic equations [J].
Boyer, Franck ;
Hubert, Florence ;
Le Rousseau, Jerome .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2010, 93 (03) :240-276
[10]   A DISCRETE HARMONIC FUNCTION BOUNDED ON A LARGE PORTION OF Z2 IS CONSTANT [J].
Buhovsky, Lev ;
Logunov, Alexander ;
Malinnikova, Eugenia ;
Sodin, Mikhail .
DUKE MATHEMATICAL JOURNAL, 2022, 171 (06) :1349-1378