YOLOv8-PD: an improved road damage detection algorithm based on YOLOv8n model

被引:6
|
作者
Zeng, Jiayi [1 ]
Zhong, Han [1 ]
机构
[1] Peoples Publ Secur Univ China, Coll informat & Network Safety, Beijing 100038, Peoples R China
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
Pavement distresses; YOLOv8-PD; Attention mechanism; GhostNet; LSCD-Head; NETWORK;
D O I
10.1038/s41598-024-62933-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Road damage detection is an crucial task to ensure road safety. To tackle the issues of poor performance on multi-scale pavement distresses and high costs in detection task, this paper presents an improved lightweight road damage detection algorithm based on YOLOv8n, named YOLOv8-PD (pavement distress). Firstly, a BOT module that can extract global information of road damage images is proposed to adapt to the large-span features of crack objects. Secondly, the introduction of the large separable kernel attention (LKSA) mechanism enhances the detection accuracy of the algorithm. Then, a C2fGhost block is constructed in the neck network to strengthen the feature extraction of complex road damages while reducing the computational load. Furthermore, we introduced lightweight shared convolution detection head (LSCD-Head) to improve feature expressiveness and reduce the number of parameters. Finally, extensive experiments on the RDD2022 dataset yield a model with parametric and computational quantities of 2.3M and 6.1 GFLOPs, which are only 74.1% and 74.3% of the baseline, and the mAP reaches an improvement of 1.4 percentage points from the baseline. In addition, experimental results on the RoadDamage dataset show that the mAP increased by 4.2% and this algorithm has good robustness. This method can provide a reference for the automatic detection method of pavement distress.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] TBF-YOLOv8n: A Lightweight Tea Bud Detection Model Based on YOLOv8n Improvements
    Fang, Wenhui
    Chen, Weizhen
    SENSORS, 2025, 25 (02)
  • [32] A lightweight weed detection model for cotton fields based on an improved YOLOv8n
    Wang, Jun
    Qi, Zhengyuan
    Wang, Yanlong
    Liu, Yanyang
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [33] Improved Peanut Quality Detection Method of YOLOv8n
    Huang, Yinglai
    Niu, Dawei
    Hou, Chang
    Yang, Liusong
    Computer Engineering and Applications, 2024, 60 (23) : 257 - 267
  • [34] SMEA-YOLOv8n: A Sheep Facial Expression Recognition Method Based on an Improved YOLOv8n Model
    Yu, Wenbo
    Yang, Xiang
    Liu, Yongqi
    Xuan, Chuanzhong
    Xie, Ruoya
    Wang, Chuanjiu
    ANIMALS, 2024, 14 (23):
  • [35] Improved YOLOv8n object detection of fragrant pears
    Tan H.
    Ma W.
    Tian Y.
    Zhang Q.
    Li M.
    Li M.
    Yang X.
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2024, 40 (11): : 178 - 185
  • [36] Maize Seed Damage Identification Method Based on Improved YOLOV8n
    Yang, Songmei
    Wang, Benxu
    Ru, Shaofeng
    Yang, Ranbing
    Wu, Jilong
    AGRONOMY-BASEL, 2025, 15 (03):
  • [37] BL-YOLOv8: An Improved Road Defect Detection Model Based on YOLOv8
    Wang, Xueqiu
    Gao, Huanbing
    Jia, Zemeng
    Li, Zijian
    SENSORS, 2023, 23 (20)
  • [38] YOLO-SAG: An improved wildlife object detection algorithm based on YOLOv8n
    Chen, Lingli
    Li, Gang
    Zhang, Shunkai
    Mao, Wenjie
    Zhang, Mei
    ECOLOGICAL INFORMATICS, 2024, 83
  • [39] Chili Pepper Object Detection Method Based on Improved YOLOv8n
    Ma, Na
    Wu, Yulong
    Bo, Yifan
    Yan, Hongwen
    PLANTS-BASEL, 2024, 13 (17):
  • [40] Research on Seamless Fabric Defect Detection Based on Improved YOLOv8n
    Sun, Qin
    Noche, Bernd
    Xie, Zongyi
    Huang, Bingqiang
    APPLIED SCIENCES-BASEL, 2025, 15 (05):