YOLOv8-PD: an improved road damage detection algorithm based on YOLOv8n model

被引:6
|
作者
Zeng, Jiayi [1 ]
Zhong, Han [1 ]
机构
[1] Peoples Publ Secur Univ China, Coll informat & Network Safety, Beijing 100038, Peoples R China
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
Pavement distresses; YOLOv8-PD; Attention mechanism; GhostNet; LSCD-Head; NETWORK;
D O I
10.1038/s41598-024-62933-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Road damage detection is an crucial task to ensure road safety. To tackle the issues of poor performance on multi-scale pavement distresses and high costs in detection task, this paper presents an improved lightweight road damage detection algorithm based on YOLOv8n, named YOLOv8-PD (pavement distress). Firstly, a BOT module that can extract global information of road damage images is proposed to adapt to the large-span features of crack objects. Secondly, the introduction of the large separable kernel attention (LKSA) mechanism enhances the detection accuracy of the algorithm. Then, a C2fGhost block is constructed in the neck network to strengthen the feature extraction of complex road damages while reducing the computational load. Furthermore, we introduced lightweight shared convolution detection head (LSCD-Head) to improve feature expressiveness and reduce the number of parameters. Finally, extensive experiments on the RDD2022 dataset yield a model with parametric and computational quantities of 2.3M and 6.1 GFLOPs, which are only 74.1% and 74.3% of the baseline, and the mAP reaches an improvement of 1.4 percentage points from the baseline. In addition, experimental results on the RoadDamage dataset show that the mAP increased by 4.2% and this algorithm has good robustness. This method can provide a reference for the automatic detection method of pavement distress.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Improved Road Damage Detection Algorithm Based on YOLOv8n
    Li, Xudong
    Zhang, Yujun
    IAENG International Journal of Computer Science, 2024, 51 (11) : 1720 - 1730
  • [2] Improved Road Object Detection Algorithm for YOLOv8n
    Gao, Deyong
    Chen, Taida
    Miao, Lan
    Computer Engineering and Applications, 2024, 60 (16) : 186 - 197
  • [3] A Lightweight Method for Road Damage Detection Based on Improved YOLOv8n
    Li, Xudong
    Zhang, Yujun
    ENGINEERING LETTERS, 2025, 33 (01) : 114 - 123
  • [4] Traffic Sign Detection Algorithm Based on Improved YOLOv8n
    Peng, Jun
    Mou, Biao
    Jin, Shangzhu
    Lu, Yiyi
    Li, Chenxi
    Chen, Wei
    Jiang, Aiping
    2024 IEEE 19TH CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS, ICIEA 2024, 2024,
  • [5] DSW-YOLOv8n: A New Underwater Target Detection Algorithm Based on Improved YOLOv8n
    Liu, Qiang
    Huang, Wei
    Duan, Xiaoqiu
    Wei, Jianghao
    Hu, Tao
    Yu, Jie
    Huang, Jiahuan
    ELECTRONICS, 2023, 12 (18)
  • [6] RDB-YOLOv8n: Insulator defect detection based on improved lightweight YOLOv8n model
    Jiang, Yong
    Wang, Shuai
    Cao, Weifeng
    Liang, Wanyong
    Shi, Jun
    Zhou, Lintao
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2024, 21 (05)
  • [7] Road target detection in harsh environments based on improved YOLOv8n
    Xu, Minjun
    Sun, Jiayu
    Zhang, Junpeng
    Yan, Mengxue
    Cao, Wen
    Hou, Alin
    Journal of Electronic Imaging, 2024, 33 (05)
  • [8] Detection algorithm of aircraft skin defects based on improved YOLOv8n
    Wang, Hao
    Fu, Lanxue
    Wang, Liwen
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (04) : 3877 - 3891
  • [9] Detection algorithm of aircraft skin defects based on improved YOLOv8n
    Hao Wang
    Lanxue Fu
    Liwen Wang
    Signal, Image and Video Processing, 2024, 18 : 3877 - 3891
  • [10] Lightweight Underwater Target Detection Algorithm Based on Improved YOLOv8n
    Xie, Guobo
    Liang, Lihui
    Lin, Zhiyi
    Lin, Songze
    Su, Qing
    LASER & OPTOELECTRONICS PROGRESS, 2024, 61 (24)