Machine learning assisted prediction of the phonon cutoff frequency of ABO3 perovskite materials

被引:7
作者
Gong, Chen [1 ,2 ]
Liu, Jian [1 ]
Dai, Siqi [1 ,2 ]
Hao, Hua [1 ]
Liu, Hanxing [1 ,2 ]
机构
[1] Wuhan Univ Technol, Sch Mat Sci & Engn, Int Sch Mat Sci & Engn, State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Peoples R China
[2] Wuhan Univ Technol, Sanya Sci & Educ Innovat Pk, Sanya 572024, Peoples R China
关键词
Machine learning; Phonon cutoff frequency; Light gradient boosting regression; Perovskite materials; BOLTZMANN TRANSPORT-EQUATION; DIELECTRIC-PROPERTIES; BREAKDOWN; STABILITY; SOLVER;
D O I
10.1016/j.commatsci.2024.112943
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
One of the phonon properties, the phonon cutoff frequency, pertains to the vibration frequency of the strongest bond in a material, and it has a direct impact on the dielectric breakdown strength. In this study, the accurate prediction of the phonon cutoff frequency was achieved using the Light Gradient Boosting Machine (LightGBM) methodology, utilizing only 15 features related to the structural and elemental information of materials. The performance of the LightGBM model yielded R2 of 0.973, RMSE of 2.214, and MAE of 1.289, surpassing other models by a significant margin. Feature analysis revealed a close correlation between the phonon cutoff frequency and the minimum of atomic number among the elements in the composition through SHapley Additive exPlanations (SHAP). Notably, this research successfully predicted the phonon cutoff frequency of ABO3 perovskite materials accurately for bypassing the time-consuming first principles calculations and reveals the correlation between the phonon cutoff frequency and the physical and chemical information of the materials simultaneous.
引用
收藏
页数:8
相关论文
共 50 条
[41]   Machine Learning Assisted Image Analysis for Microalgae Prediction [J].
Sundaram, Karthikeyan Meenatchi ;
Kumar, Sikhakolli Sravan ;
Deshpande, Anuj ;
Chinnadurai, Sunil ;
Rajendran, Karthik .
ACS ES&T ENGINEERING, 2024, :541-550
[42]   Machine learning assisted screening of MXenes pseudocapacitive materials [J].
Wang, Lijing ;
Gao, Shan ;
Li, Wenting ;
Zhu, Ao ;
Li, Huan ;
Zhao, Chunning ;
Zhang, Haijun ;
Wang, Wei-Hua ;
Wang, Weichao .
JOURNAL OF POWER SOURCES, 2023, 564
[43]   MACHINE LEARNING ASSISTED DESIGN FOR ACTIVE CATHODE MATERIALS [J].
Yong, Sihan ;
Zheng, Zhuoyuan ;
Wang, Pingfeng ;
Li, Yumeng .
PROCEEDINGS OF THE ASME 2020 INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, IMECE2020, VOL 3, 2020,
[44]   Multi-Properties prediction of perovskite materials using Machine learning and Meta-Heuristic feature selection [J].
Kusuma, Frendy Jaya ;
Widianto, Eri ;
Wahyono ;
Santoso, Iman ;
Sholihun ;
Absor, Moh. Adhib Ulil ;
Sakti, Setyawan Purnomo ;
Triyana, Kuwat .
SOLAR ENERGY, 2025, 286
[45]   ADASYN-assisted machine learning for phase prediction of high entropy carbides [J].
Mitra, Rahul ;
Bajpai, Anurag ;
Biswas, Krishanu .
COMPUTATIONAL MATERIALS SCIENCE, 2023, 223
[46]   Machine Learning-Assisted Microfluidic Synthesis of Perovskite Quantum Dots [J].
Chen, Gaoyu ;
Zhu, Xia ;
Xing, Chenyu ;
Wang, Yongkai ;
Xu, Xiangxing ;
Bao, Jianchun ;
Huang, Jinghan ;
Zhao, Yurong ;
Wang, Xuan ;
Zhou, Xiuqing ;
Du, Xiuli ;
Wang, Xun .
ADVANCED PHOTONICS RESEARCH, 2023, 4 (01)
[47]   Claim Frequency Modeling and Prediction via Machine Learning [J].
Zeng Yuzhe ;
Wu Aibo ;
Zheng Hongyuan ;
Luo Laijuan .
PROCEEDINGS OF 2018 CHINA INTERNATIONAL CONFERENCE ON INSURANCE AND RISK MANAGEMENT, 2018, :594-616
[48]   Machine Learning based prediction of noncentrosymmetric crystal materials [J].
Song, Yuqi ;
Lindsay, Joseph ;
Zhao, Yong ;
Nasiri, Alireza ;
Louis, Steph-Yves ;
Ling, Jie ;
Hu, Ming ;
Hu, Jianjun .
COMPUTATIONAL MATERIALS SCIENCE, 2020, 183
[49]   Development on Machine Learning for Durability Prediction of Concrete Materials [J].
Liu X. ;
Wang S. ;
Lu L. ;
Chen M. ;
Zhai Y. ;
Cui S. .
Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society, 2023, 51 (08) :2062-2073
[50]   Machine learning-assisted design of wide bandgap perovskite materials for high-efficiency indoor photovoltaic applications [J].
Mishra, Snehangshu ;
Boro, Binita ;
Bansal, Nitin Kumar ;
Singh, Trilok .
MATERIALS TODAY COMMUNICATIONS, 2023, 35