Machine learning assisted prediction of the phonon cutoff frequency of ABO3 perovskite materials

被引:7
作者
Gong, Chen [1 ,2 ]
Liu, Jian [1 ]
Dai, Siqi [1 ,2 ]
Hao, Hua [1 ]
Liu, Hanxing [1 ,2 ]
机构
[1] Wuhan Univ Technol, Sch Mat Sci & Engn, Int Sch Mat Sci & Engn, State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Peoples R China
[2] Wuhan Univ Technol, Sanya Sci & Educ Innovat Pk, Sanya 572024, Peoples R China
关键词
Machine learning; Phonon cutoff frequency; Light gradient boosting regression; Perovskite materials; BOLTZMANN TRANSPORT-EQUATION; DIELECTRIC-PROPERTIES; BREAKDOWN; STABILITY; SOLVER;
D O I
10.1016/j.commatsci.2024.112943
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
One of the phonon properties, the phonon cutoff frequency, pertains to the vibration frequency of the strongest bond in a material, and it has a direct impact on the dielectric breakdown strength. In this study, the accurate prediction of the phonon cutoff frequency was achieved using the Light Gradient Boosting Machine (LightGBM) methodology, utilizing only 15 features related to the structural and elemental information of materials. The performance of the LightGBM model yielded R2 of 0.973, RMSE of 2.214, and MAE of 1.289, surpassing other models by a significant margin. Feature analysis revealed a close correlation between the phonon cutoff frequency and the minimum of atomic number among the elements in the composition through SHapley Additive exPlanations (SHAP). Notably, this research successfully predicted the phonon cutoff frequency of ABO3 perovskite materials accurately for bypassing the time-consuming first principles calculations and reveals the correlation between the phonon cutoff frequency and the physical and chemical information of the materials simultaneous.
引用
收藏
页数:8
相关论文
共 50 条
[21]   Machine Learning Assisted Prediction of Cathode Materials for Zn-Ion Batteries [J].
Zhou, Linming ;
Yao, Archie Mingze ;
Wu, Yongjun ;
Hu, Ziyi ;
Huang, Yuhui ;
Hong, Zijian .
ADVANCED THEORY AND SIMULATIONS, 2021, 4 (09)
[22]   Machine learning-assisted SCAPS device simulation for photovoltaic parameters prediction of CsSnI3 3 perovskite solar cells [J].
Chabri, I. ;
Said, M. ;
El-Allaly, Ed. ;
Oubelkacem, A. .
MATERIALS TODAY COMMUNICATIONS, 2024, 41
[23]   Machine Learning-Assisted Prediction of Ambient-Processed Perovskite Solar Cells' Performances [J].
Pyun, Dowon ;
Lee, Seungtae ;
Lee, Solhee ;
Jeong, Seok-Hyun ;
Hwang, Jae-Keun ;
Kim, Kyunghwan ;
Kim, Youngmin ;
Nam, Jiyeon ;
Cho, Sujin ;
Hwang, Ji-Seong ;
Lee, Wonkyu ;
Lee, Sangwon ;
Lee, Hae-Seok ;
Kim, Donghwan ;
Kang, Yoonmook .
ENERGIES, 2024, 17 (23)
[24]   A Machine-Learning-Assisted Crystalline Structure Prediction Framework To Accelerate Materials Discovery [J].
An, Ran ;
Xie, Congwei ;
Chu, Dongdong ;
Li, Fuming ;
Pan, Shilie ;
Yang, Zhihua .
ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (28) :36658-36666
[25]   Elevating perovskite efficiency via Machine Learning-Assisted screening of Passivators [J].
Wu, Zhuxia ;
Kang, Lirui ;
Huang, Tengcheng ;
Xu, Xin ;
Gao, Yujia ;
Zhang, Weihai ;
Xie, Weiguang ;
Shi, Tingting .
CHEMICAL ENGINEERING JOURNAL, 2024, 499
[26]   Dependence of critical radius of the cubic perovskite ABO3 oxides on the radius of A- and B-site cations [J].
Xu, Nansheng ;
Zhao, Hailei ;
Zhou, Xiong ;
Wei, Wenjing ;
Lu, Xionggang ;
Ding, Weizhong ;
Li, Fushen .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (14) :7295-7301
[27]   Rationalizing Perovskite Data for Machine Learning and Materials Design [J].
Xu, Qichen ;
Li, Zhenzhu ;
Liu, Miao ;
Yin, Wan-Jian .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2018, 9 (24) :6948-6954
[28]   A progressive learning method for predicting the band gap of ABO3 perovskites using an instrumental variable [J].
Li, Changjiao ;
Hao, Hua ;
Xu, Ben ;
Zhao, Guanghui ;
Chen, Lihao ;
Zhang, Shujun ;
Liu, Hanxing .
JOURNAL OF MATERIALS CHEMISTRY C, 2020, 8 (09) :3127-3136
[29]   Machine learning assisted designing of hole-transporting materials for high performance perovskite solar cells [J].
Saqib, Muhammad ;
Shoukat, Uzma ;
Soliman, Mohamed Mohamed ;
Bashir, Shahida ;
Tahir, Mudassir Hussain ;
Thabet, Hamdy Khamees ;
Kallel, Mohamed .
CHEMICAL PHYSICS, 2025, 589
[30]   Machine Learning for Perovskite Solar Cells and Component Materials: Key Technologies and Prospects [J].
Liu, Yiming ;
Tan, Xinyu ;
Liang, Jie ;
Han, Hongwei ;
Xiang, Peng ;
Yan, Wensheng .
ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (17)