Mechanical Behavior Based on Aggregates Microstructure of Ultra-high Performance Concrete

被引:1
|
作者
Ding, Qingjun [1 ,2 ]
Zhou, Changsheng [1 ]
Zhang, Gaozhan [2 ]
Guo, Hong [3 ]
Li, Yang [2 ]
Zhang, Yongyuan [1 ]
Guo, Kaizheng [1 ]
机构
[1] Wuhan Univ Technol, Sch Mat Sci & Engn, Wuhan 430070, Peoples R China
[2] Anhui Jianzhu Univ, Sch Mat Sci & Chem Engn, Adv Bldg Mat Key Lab Anhui Prov, Hefei 230601, Peoples R China
[3] China Railway 17th Bur Grp Co Ltd, Taiyuan 030006, Peoples R China
来源
JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY-MATERIALS SCIENCE EDITION | 2024年 / 39卷 / 03期
基金
中国国家自然科学基金;
关键词
ultra-high performance concrete; mechanical properties; fine aggregates; microstructure; nanoindentation; FIBER-REINFORCED CONCRETE; REACTIVE POWDER CONCRETE; STRENGTH; SIZE; UPV;
D O I
10.1007/s11595-024-2925-3
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We developed ultra-high performance concrete (UHPC) incorporating mullite sand and brown corundum sand (BCS), and the quartz sand UHPC was utilized to prepare for comparison. The properties of compressive strength, elastic modulus, ultrasonic pulse velocity, flexural strength, and toughness were investigated. Scanning electron microscopy and nanoindentation were also conducted to reveal the underlying mechanisms affecting macroscopic performance. Due to the superior interface bonding properties between mullite sand and matrix, the compressive strength and flexural toughness of UHPC have been significantly improved. Mullite sand and BCS aggregates have higher stiffness than quartz sand, contributing to the excellent elastic modulus exhibited by UHPC. The stiffness and volume of aggregates have a more significant impact on the elastic modulus of UHPC than interface performance, and the latter contributes more to the strength of UHPC. This study will provide a reference for developing UHPC with superior elastic modulus for structural engineering.
引用
收藏
页码:673 / 681
页数:9
相关论文
共 50 条
  • [21] The treated recycled aggregates effects on workability, mechanical properties and microstructure of ultra-high performance concrete Co-reinforced with nano-silica and steel fibers
    Sun, Hang
    Luo, Liang
    Li, Xi
    Yuan, Huan
    JOURNAL OF BUILDING ENGINEERING, 2024, 86
  • [22] THE MECHANICAL PROPERTIES AND MICROSTRUCTURE OF ULTRA-HIGH PERFORMANCE CONCRETE CONTAINING VARIOUS SUPPLEMENTARY CEMENTITIOUS MATERIALS
    Zhang, Jisong
    Zhao, Yinghua
    1ST INTERNATIONAL CONFERENCE ON UHPC MATERIALS AND STRUCTURES, 2016, 105 : 197 - 210
  • [23] Ultra-high performance concrete prepared with ceramic polishing waste: Hydration, microstructure and mechanical property
    Li, Xiangguo
    Tian, Bo
    Lv, Yang
    Zhang, Chenglong
    Jiang, Dongbing
    Xu, Jinsheng
    He, Chenhao
    Jian, Shouwei
    Wu, Kai
    Deng, Xiufeng
    POWDER TECHNOLOGY, 2023, 424
  • [24] Effect of steel fiber on the compressive performance and microstructure of ultra-high performance concrete at elevated temperatures
    Gao, Danying
    Zhang, Wei
    Tang, Jiyu
    Zhu, Zhihao
    CONSTRUCTION AND BUILDING MATERIALS, 2024, 435
  • [25] Shear behavior of ultra-high performance concrete
    Pourbaba, Masoud
    Joghataie, Abdolreza
    Mirmiran, Amir
    CONSTRUCTION AND BUILDING MATERIALS, 2018, 183 : 554 - 564
  • [26] Durability of ultra-high performance concrete - A review
    Li, Junquan
    Wu, Zemei
    Shi, Caijun
    Yuan, Qiang
    Zhang, Zuhua
    CONSTRUCTION AND BUILDING MATERIALS, 2020, 255
  • [27] Ultra-high performance concrete - properties and technology
    Zdeb, T.
    BULLETIN OF THE POLISH ACADEMY OF SCIENCES-TECHNICAL SCIENCES, 2013, 61 (01) : 183 - 193
  • [28] Properties of ultra-high performance concrete using optimization of traditional aggregates and pozzolans
    Hasnat, Ariful
    Ghafoori, Nader
    CONSTRUCTION AND BUILDING MATERIALS, 2021, 299
  • [29] Study on the mechanical and rheological properties of ultra-high performance concrete
    Chen, Ying
    Liu, Peng
    Sha, Fei
    Yin, Jian
    He, Sasa
    Li, Qianghui
    Yu, Zhiwu
    Chen, Hailong
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2022, 17 : 111 - 124
  • [30] Effect of coarse basalt aggregates on the properties of Ultra-high Performance Concrete (UHPC)
    Li, P. P.
    Yu, Q. L.
    Brouwers, H. J. H.
    CONSTRUCTION AND BUILDING MATERIALS, 2018, 170 : 649 - 659