Mechanical Behavior Based on Aggregates Microstructure of Ultra-high Performance Concrete

被引:1
|
作者
Ding, Qingjun [1 ,2 ]
Zhou, Changsheng [1 ]
Zhang, Gaozhan [2 ]
Guo, Hong [3 ]
Li, Yang [2 ]
Zhang, Yongyuan [1 ]
Guo, Kaizheng [1 ]
机构
[1] Wuhan Univ Technol, Sch Mat Sci & Engn, Wuhan 430070, Peoples R China
[2] Anhui Jianzhu Univ, Sch Mat Sci & Chem Engn, Adv Bldg Mat Key Lab Anhui Prov, Hefei 230601, Peoples R China
[3] China Railway 17th Bur Grp Co Ltd, Taiyuan 030006, Peoples R China
来源
JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY-MATERIALS SCIENCE EDITION | 2024年 / 39卷 / 03期
基金
中国国家自然科学基金;
关键词
ultra-high performance concrete; mechanical properties; fine aggregates; microstructure; nanoindentation; FIBER-REINFORCED CONCRETE; REACTIVE POWDER CONCRETE; STRENGTH; SIZE; UPV;
D O I
10.1007/s11595-024-2925-3
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We developed ultra-high performance concrete (UHPC) incorporating mullite sand and brown corundum sand (BCS), and the quartz sand UHPC was utilized to prepare for comparison. The properties of compressive strength, elastic modulus, ultrasonic pulse velocity, flexural strength, and toughness were investigated. Scanning electron microscopy and nanoindentation were also conducted to reveal the underlying mechanisms affecting macroscopic performance. Due to the superior interface bonding properties between mullite sand and matrix, the compressive strength and flexural toughness of UHPC have been significantly improved. Mullite sand and BCS aggregates have higher stiffness than quartz sand, contributing to the excellent elastic modulus exhibited by UHPC. The stiffness and volume of aggregates have a more significant impact on the elastic modulus of UHPC than interface performance, and the latter contributes more to the strength of UHPC. This study will provide a reference for developing UHPC with superior elastic modulus for structural engineering.
引用
收藏
页码:673 / 681
页数:9
相关论文
共 50 条
  • [1] Nano-mechanical behavior of a green ultra-high performance concrete
    Zhao, Sujing
    Sun, Wei
    CONSTRUCTION AND BUILDING MATERIALS, 2014, 63 : 150 - 160
  • [2] The effect of curing regimes on the mechanical properties, nano-mechanical properties and microstructure of ultra-high performance concrete
    Shen, Peiliang
    Lu, Linnu
    He, Yongjia
    Wang, Fazhou
    Hu, Shuguang
    CEMENT AND CONCRETE RESEARCH, 2019, 118 : 1 - 13
  • [3] The role of carbonated steel slag on mechanical performance of ultra-high performance concrete containing coarse aggregates
    Li, Shaohua
    Liu, Gang
    Yu, Qingliang
    CONSTRUCTION AND BUILDING MATERIALS, 2021, 307 (307)
  • [4] Ultra-high performance concrete versus ultra-high performance geopolymer concrete: Mechanical performance, microstructure, and ecological assessment
    Abdellatief, Mohamed
    Abd Elrahman, Mohamed
    Abadel, Aref A.
    Wasim, Muhammad
    Tahwia, Ahmed
    JOURNAL OF BUILDING ENGINEERING, 2023, 79
  • [5] Ultra-High Performance Concrete: Mechanical Performance, Durability, Sustainability and Implementation Challenges
    Abbas, S.
    Nehdi, M. L.
    Saleem, M. A.
    INTERNATIONAL JOURNAL OF CONCRETE STRUCTURES AND MATERIALS, 2016, 10 (03) : 271 - 295
  • [6] Mechanical and Microstructural Properties of Ultra-High Performance Concrete with Lightweight Aggregates
    Alanazi, Hani
    Elalaoui, Oussama
    Adamu, Musa
    Alaswad, Saleh O.
    Ibrahim, Yasser E.
    Abadel, Aref A.
    Al Fuhaid, Abdulrahman Fahad
    BUILDINGS, 2022, 12 (11)
  • [7] Mechanical properties of geopolymer-based ultra-high performance concrete with ceramic ball coarse aggregates
    Liu, Jian
    Cai, Pengbo
    Liu, Cheng
    Liu, Pengfei
    Su, Yu
    Xu, Shenchun
    Wu, Chengqing
    JOURNAL OF CLEANER PRODUCTION, 2023, 420
  • [8] Effect of graphene oxide on microstructure and micromechanical property of ultra-high performance concrete
    Yu, Lingbo
    Bai, Shuai
    Guan, Xinchun
    CEMENT & CONCRETE COMPOSITES, 2023, 138
  • [9] Effect of materials proportion on rheology and mechanical strength and microstructure of ultra-high performance concrete (UHPC)
    Sadrmomtazi, Ali
    Tajasosi, Sama
    Tahmouresi, Behzad
    CONSTRUCTION AND BUILDING MATERIALS, 2018, 187 : 1103 - 1112
  • [10] Adding hydrated lime for improving microstructure and mechanical properties of mortar for ultra-high performance concrete
    Zhang, Gui
    Peng, Gai-Fei
    Zuo, Xue-Yu
    Niu, Xu-Jing
    Ding, Hong
    CEMENT AND CONCRETE RESEARCH, 2023, 167