Unknown DDoS Attack Detection with Fuzzy C-Means Clustering and Spatial Location Constraint Prototype Loss

被引:4
作者
Nguyen, Thanh-Lam [1 ]
Kao, Hao [1 ]
Nguyen, Thanh-Tuan [2 ]
Horng, Mong-Fong [1 ]
Shieh, Chin-Shiuh [1 ]
机构
[1] Natl Kaohsiung Univ Sci & Technol, Dept Elect Engn, Kaohsiung 807618, Taiwan
[2] Nha Trang Univ, Dept Elect & Automat Engn, Nha Trang 650000, Vietnam
来源
CMC-COMPUTERS MATERIALS & CONTINUA | 2024年 / 78卷 / 02期
关键词
Cybersecurity; DDoS; unknown attack detection; machine learning; deep learning; incremental learning; convolutional neural networks (CNN); open-set recognition (OSR); spatial location constraint prototype loss; fuzzy c-means; CICIDS2017; CICDDoS2019;
D O I
10.32604/cmc.2024.047387
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Since its inception, the Internet has been rapidly evolving. With the advancement of science and technology and the explosive growth of the population, the demand for the Internet has been on the rise. Many applications in education, healthcare, entertainment, science, and more are being increasingly deployed based on the internet. Concurrently, malicious threats on the internet are on the rise as well. Distributed Denial of Service (DDoS) attacks are among the most common and dangerous threats on the internet today. The scale and complexity of DDoS attacks are constantly growing. Intrusion Detection Systems (IDS) have been deployed and have demonstrated their effectiveness in defense against those threats. In addition, the research of Machine Learning (ML) and Deep Learning (DL) in IDS has gained effective results and significant attention. However, one of the challenges when applying ML and DL techniques in intrusion detection is the identification of unknown attacks. These attacks, which are not encountered during the system's training, can lead to misclassification with significant errors. In this research, we focused on addressing the issue of Unknown Attack Detection, combining two methods: Spatial Location Constraint Prototype Loss (SLCPL) and Fuzzy C -Means (FCM). With the proposed method, we achieved promising results compared to traditional methods. The proposed method demonstrates a very high accuracy of up to 99.8% with a low false positive rate for known attacks on the Intrusion Detection Evaluation Dataset (CICIDS2017) dataset. Particularly, the accuracy is also very high, reaching 99.7%, and the precision goes up to 99.9% for unknown DDoS attacks on the DDoS Evaluation Dataset (CICDDoS2019) dataset. The success of the proposed method is due to the combination of SLCPL, an advanced Open -Set Recognition (OSR) technique, and FCM, a traditional yet highly applicable clustering technique. This has yielded a novel method in the field of unknown attack detection. This further expands the trend of applying DL and ML techniques in the development of intrusion detection systems and cybersecurity. Finally, implementing the proposed method in real -world systems can enhance the security capabilities against increasingly complex threats on computer networks.
引用
收藏
页码:2181 / 2205
页数:25
相关论文
共 50 条
  • [31] A new validity index of fuzzy c-means clustering
    Zhang, Xin-bo
    Jiang, Li
    2009 INTERNATIONAL CONFERENCE ON INTELLIGENT HUMAN-MACHINE SYSTEMS AND CYBERNETICS, VOL 2, PROCEEDINGS, 2009, : 218 - 221
  • [32] Particle swarm optimization for fuzzy c-means clustering
    Wang, Li
    Liu, Yushu
    Zhao, Xinxin
    Xu, Yuanqing
    WCICA 2006: SIXTH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-12, CONFERENCE PROCEEDINGS, 2006, : 6055 - +
  • [33] Sparse learning based fuzzy c-means clustering
    Gu, Jing
    Jiao, Licheng
    Yang, Shuyuan
    Zhao, Jiaqi
    KNOWLEDGE-BASED SYSTEMS, 2017, 119 : 113 - 125
  • [34] A robust clustering algorithm using spatial fuzzy C-means for brain MR images
    Alruwaili, Madallah
    Siddiqi, Muhammad Hameed
    Javed, Muhammad Arshad
    EGYPTIAN INFORMATICS JOURNAL, 2020, 21 (01) : 51 - 66
  • [35] Fuzzy c-means clustering for power system coherence
    Wang, SC
    Huang, PH
    INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS, VOL 1-4, PROCEEDINGS, 2005, : 2850 - 2855
  • [36] Analytically tractable case of fuzzy c-means clustering
    Pianykh, OS
    PATTERN RECOGNITION, 2006, 39 (01) : 35 - 46
  • [37] A Novel Selective Scale Space Based Fuzzy C-Means Model for Spatial Clustering
    Roy, Parthajit
    Mandal, J. K.
    FIRST INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE: MODELING TECHNIQUES AND APPLICATIONS (CIMTA) 2013, 2013, 10 : 596 - 603
  • [38] Investigating the spatial basis clustering of smart tourism potential using fuzzy c-means
    Tosida, Eneng Tita
    Mulyati
    Jayawinangun, Roni
    Pratiwi, Anisa Putri
    Sambas, Aceng
    Saputra, Jumadil
    DECISION SCIENCE LETTERS, 2024, 13 (04) : 1027 - 1042
  • [39] Improvement and optimization of a Fuzzy C-Means clustering algorithm
    Shen, Y
    Shi, H
    Zhang, JQ
    IMTC/2001: PROCEEDINGS OF THE 18TH IEEE INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE, VOLS 1-3: REDISCOVERING MEASUREMENT IN THE AGE OF INFORMATICS, 2001, : 1430 - 1433
  • [40] Projected fuzzy C-means clustering with locality preservation
    Zhou, Jie
    Pedrycz, Witold
    Yue, Xiaodong
    Gao, Can
    Lai, Zhihui
    Wan, Jun
    PATTERN RECOGNITION, 2021, 113