Core-shell NH2-UiO-66@iCOPs with built-in "adsorption engines" for improving CO2 adsorption and conversion

被引:1
|
作者
Liu, Ping [1 ]
Cai, Kaixing [1 ]
Liang, Hua [1 ]
Chen, Peng [1 ]
Tao, Duan-Jian [2 ]
Zhao, Tianxiang [1 ]
机构
[1] Guizhou Univ, Sch Chem & Chem Engn, Key Lab Green Chem & Clean Energy Technol, Guiyang 550025, Peoples R China
[2] Jiangxi Normal Univ, Coll Chem & Chem Engn, Nanchang 330022, Peoples R China
基金
中国国家自然科学基金;
关键词
CO2; Metal-organic-frameworks; Covalent organic frameworks; Cyclic carbonate; Core-shell structure; CARBONS; CONSTRUCTION;
D O I
10.1007/s42114-024-00947-x
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Integrating the advantages of metal-organic framework (MOFs) and ionic organic polymers (iCOPs), we fabricated a series of novel hybrid materials (core-shell M@iCOPs) by growing iCOP shell layers of varying thicknesses on the NH2-UiO-66. These M@iCOP hybrids, with NH2-UiO-66 serving as an embedded "adsorption engine," exhibit richer pore channels, which combined with the nitrogen-rich structure and pi-pi stacking interactions in the shell layer of the iCOPs, which led to a significant enhancement of CO2 adsorption with up to 3.33 mmol<middle dot>g(-1) at 0 degrees C and 1 bar. Remarkably, M@iCOPs-400, which possesses abundant ionic and Lewis acid sites, demonstrates excellent performance in CO2 conversion under milder conditions through interfacial synergistic effect, affording various cyclic carbonates in 90-99% yields. Overall, this research provides a straightforward and cost-effective approach for constructing core-shell M@iCOP materials.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Covalently connected core-shell NH2-UiO-66@Br-COFs hybrid materials for CO2 capture and I2 vapor adsorption
    Wang, Jiajia
    Wang, Lizhi
    Wang, You
    Yang, Fan
    Li, Jiawei
    Guan, Xiyuan
    Zong, Junjiang
    Zhou, Fa
    Huang, Jianhan
    Liu, You-Nian
    CHEMICAL ENGINEERING JOURNAL, 2022, 438
  • [2] UiO-66 and UiO-66-NH2 based sensors: Dielectric and FTIR investigations on the effect of CO2 adsorption
    Strauss, Ina
    Chakarova, Kristina
    Mundstock, Alexander
    Mihaylov, Mihail
    Hadjiivanov, Konstantin
    Guschanski, Natalija
    Caro, Juergen
    MICROPOROUS AND MESOPOROUS MATERIALS, 2020, 302
  • [3] Adsorption of arsenite by core-shell K-OMS-2@UiO-66 microspheres: performance and mechanism
    Yu, Wenyi
    Liang, Qianwei
    Yin, Yuwei
    Geng, Junjie
    Chen, Wei
    Tan, Xuanyi
    Luo, Hanjin
    NEW JOURNAL OF CHEMISTRY, 2020, 44 (34) : 14389 - 14400
  • [4] Experimental investigation of CO2 adsorption capacities in bimetallic-doped UiO-66 and UiO-66-NH2 frameworks
    Zhang, Yongjia
    Islam, Md. Amirul
    Saha, Bidyut Baran
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2025, 713
  • [5] Synthesis, characterization and adsorption ability of UiO-66-NH2
    Cam Loc Luu
    Thi Thuy Van Nguyen
    Tri Nguyen
    Tien Cuong Hoang
    ADVANCES IN NATURAL SCIENCES-NANOSCIENCE AND NANOTECHNOLOGY, 2015, 6 (02)
  • [6] Fabricating MOF@COF core-shell catalyst with remarkable CO2 adsorption capacity and charge carrier dynamic for efficient CO2 conversion
    Li, Gen
    Wang, Mei
    Zhou, Weiqiang
    Liu, Xin
    Zhu, Zhi
    Song, Xianghai
    Huo, Pengwei
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 968
  • [7] Effect of modification of UiO-66 for CO2 adsorption and separation of CO2/CH4
    Mutyala, Suresh
    Jonnalagadda, Madhavi
    Ibrahim, Sobhy M.
    JOURNAL OF MOLECULAR STRUCTURE, 2021, 1227
  • [8] Improving CO2 adsorption capacity and CO2/N2 selectivity of UiO-66-NH2 via defect engineering and IL-encapsulation
    Kang, Dong A.
    Murphy, Christian
    Jeong, Hae-Kwon
    MICROPOROUS AND MESOPOROUS MATERIALS, 2024, 369
  • [9] Metal-Organic Framework-Membranized Bicomponent Core-Shell Catalyst HZSM-5@UIO-66-NH2/Pd for CO2 Selective Conversion
    Pan, Xinbo
    Xu, Haitao
    Zhao, Xi
    Zhang, Huaqian
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2020, 8 (02) : 1087 - 1094
  • [10] Synthesis of UiO-66-NH2@PILs core-shell composites for CO2 conversion into cyclic carbonates via synergistic catalysis under solvent- and additive-free conditions
    Yuan, Yuxin
    Liao, Quanlan
    Zhao, Tianxiang
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2025, 704