Monitoring covariance in multivariate time series: Comparing machine learning and statistical approaches

被引:0
|
作者
Weix, Derek [1 ]
Cath, Tzahi Y. [2 ]
Hering, Amanda S. [1 ]
机构
[1] Baylor Univ, Dept Stat Sci, One Bear Pl 97140, Waco, TX 76798 USA
[2] Colorado Sch Mines, Dept Civil & Environm Engn, Golden, CO USA
基金
美国国家科学基金会;
关键词
fault detection; machine learning; MEWMA; real-time; time series data; CONTROL CHARTS; PROCESS VARIABILITY; MATRIX;
D O I
10.1002/qre.3551
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In complex systems with multiple variables monitored at high-frequency, variables are not only temporally autocorrelated, but they may also be nonlinearly related or exhibit nonstationarity as the inputs or operation changes. One approach to handling such variables is to detrend them prior to monitoring and then apply control charts that assume independence and stationarity to the residuals. Monitoring controlled systems is even more challenging because the control strategy seeks to maintain variables at prespecified mean levels, and to compensate, correlations among variables may change, making monitoring the covariance essential. In this paper, a vector autoregressive model (VAR) is compared with a multivariate random forest (MRF) and a neural network (NN) for detrending multivariate time series prior to monitoring the covariance of the residuals using a multivariate exponentially weighted moving average (MEWMA) control chart. Machine learning models have an advantage when the data's structure is unknown or may change. We design a novel simulation study with nonlinear, nonstationary, and autocorrelated data to compare the different detrending models and subsequent covariance monitoring. The machine learning models have superior performance for nonlinear and strongly autocorrelated data and similar performance for linear data. An illustration with data from a reverse osmosis process is given.
引用
收藏
页码:2822 / 2840
页数:19
相关论文
共 50 条
  • [31] Multivariate Financial Time Series Forecasting with Deep Learning
    Martelo, Sebastian
    Leon, Diego
    Hernandez, German
    APPLIED COMPUTER SCIENCES IN ENGINEERING, WEA 2022, 2022, 1685 : 160 - 169
  • [32] Hybrid of Time Series Regression, Multivariate Generalized Space-Time Autoregressive, and Machine Learning for Forecasting Air Pollution
    Prabowo, Hendri
    Prastyo, Dedy Dwi
    Setiawan
    SOFT COMPUTING IN DATA SCIENCE, SCDS 2021, 2021, 1489 : 351 - 365
  • [33] Comparing Machine Learning and Deep Learning Approaches on NLP Tasks for the Italian Language
    Magnini, Bernardo
    Lavelli, Alberto
    Magnolini, Simone
    PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION (LREC 2020), 2020, : 2110 - 2119
  • [34] Modelling and prediction of GNSS time series using GBDT, LSTM and SVM machine learning approaches
    Gao, Wenzong
    Li, Zhao
    Chen, Qusen
    Jiang, Weiping
    Feng, Yanming
    JOURNAL OF GEODESY, 2022, 96 (10)
  • [35] Modelling and prediction of GNSS time series using GBDT, LSTM and SVM machine learning approaches
    Wenzong Gao
    Zhao Li
    Qusen Chen
    Weiping Jiang
    Yanming Feng
    Journal of Geodesy, 2022, 96
  • [36] Comparing Explainable Machine Learning Approaches With Traditional Statistical Methods for Evaluating Stroke Risk Models: Retrospective Cohort Study
    Lolak, Sermkiat
    Attia, John
    Mckay, Gareth J.
    Thakkinstian, Ammarin
    JMIR CARDIO, 2023, 7
  • [37] Time Series Prediction Based on Machine Learning
    Jiang, Q. Y.
    PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON ELECTRICAL, AUTOMATION AND MECHANICAL ENGINEERING (EAME 2015), 2015, 13 : 128 - 129
  • [38] Machine Learning Advances for Time Series Forecasting
    Masini, Ricardo P.
    Medeiros, Marcelo C.
    Mendes, Eduardo F.
    JOURNAL OF ECONOMIC SURVEYS, 2023, 37 (01) : 76 - 111
  • [39] Comparing Scientific Machine Learning With Population Pharmacokinetic and Classical Machine Learning Approaches for Prediction of Drug Concentrations
    Valderrama, Diego
    Teplytska, Olga
    Koltermann, Luca Marie
    Trunz, Elena
    Schmulenson, Eduard
    Fritsch, Achim
    Jaehde, Ulrich
    Froehlich, Holger
    CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY, 2025, : 759 - 769
  • [40] Machine Learning Strategies for Time Series Forecasting
    Bontempi, Gianluca
    Ben Taieb, Souhaib
    Le Borgne, Yann-Ael
    BUSINESS INTELLIGENCE, EBISS 2012, 2013, 138 : 62 - 77