Integer partitions with restricted odd and even parts

被引:0
作者
Saikia, Nipen [1 ]
机构
[1] Rajiv Gandhi Univ, Dept Math, Rono Hills, Doimukh 791112, Arunachal Prade, India
关键词
Integer partition; Partition with restricted odd and even parts; Congruence; q-series identities; CONGRUENCES;
D O I
10.1007/s13226-024-00584-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note, two generalized partition functions po alpha(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_o<^>\alpha (n)$$\end{document} and pe beta(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_e<^>\beta (n)$$\end{document} are considered, where for any odd positive integer alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}, po alpha(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_o<^>\alpha (n)$$\end{document} denotes the number of partitions of n into odd parts such that no parts is congruent to alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} modulo 2 alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\alpha $$\end{document}, and for any even positive integer beta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document}, pe beta(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_e<^>\beta (n)$$\end{document} denotes the number of partitions of n into even parts such that no parts is congruent to beta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} modulo 2 beta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\beta $$\end{document}. Some divisibility properties of po alpha(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_o<^>\alpha (n)$$\end{document} and pe beta(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_e<^>\beta (n)$$\end{document} are discussed for some particular values of alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} and beta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document}.
引用
收藏
页数:5
相关论文
共 11 条
[1]  
Andrews G.E., 2019, Developments in Math., V58, P71
[2]   Analogues of Ramanujan's partition identities and congruences arising from his theta functions and modular equations [J].
Baruah, Nayandeep Deka ;
Ojah, Kanan Kumari .
RAMANUJAN JOURNAL, 2012, 28 (03) :385-407
[3]  
Berndt B.C., 1995, AM MATH SOC
[4]   Arithmetic properties of l-regular partitions [J].
Cui, Su-Ping ;
Gu, Nancy S. S. .
ADVANCES IN APPLIED MATHEMATICS, 2013, 51 (04) :507-523
[5]   ELEMENTARY PROOFS OF PARITY RESULTS FOR 5-REGULAR PARTITIONS [J].
Hirschhorn, Michael D. ;
Sellers, James A. .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2010, 81 (01) :58-63
[6]   Congruence properties of partitions. [J].
Ramanujan, S .
MATHEMATISCHE ZEITSCHRIFT, 1921, 9 :147-153
[7]  
Ramanujan S, 1962, Collected papers
[9]   Some Congruence Properties of a Restricted Bipartition Function c(N)(n) [J].
Saikia, Nipen ;
Boruah, Chayanika .
INTERNATIONAL JOURNAL OF ANALYSIS, 2016,
[10]  
Schur I, 1926, SITZBER PREUSS AKAD, P488