High-Performance All-Solid-State Lithium Metal Batteries Enabled by Ionic Covalent Organic Framework Composites

被引:21
作者
Huang, Jun [1 ]
Cheng, Lei [2 ]
Zhang, Zhenyang [2 ]
Li, Chen [1 ]
Bang, Ki-Taek [1 ]
Liem, Albert [1 ]
Luo, Hang [1 ]
Hu, Chuan [3 ]
Lee, Young Moo [3 ]
Lu, Yingying [4 ,5 ,6 ]
Wang, Yanming [2 ]
Kim, Yoonseob [1 ,7 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Chem & Biol Engn, Kowloon, Clear Water Bay, Hong Kong 999077, Peoples R China
[2] Shanghai Jiao Tong Univ, Univ Michigan Shanghai Jiao Tong Univ Joint Inst, Shanghai 200240, Peoples R China
[3] Hanyang Univ, Coll Engn, Dept Energy Engn, Seoul 04763, South Korea
[4] Zhejiang Univ, Inst Pharmaceut Engn, Coll Chem & Biol Engn, State Key Lab Chem Engn, Hangzhou 310027, Peoples R China
[5] Zhejiang Univ, ZJU Hangzhou Global Sci & Technol Innovat Ctr, Hangzhou 311215, Peoples R China
[6] Zhejiang Univ, Inst Wenzhou, Wenzhou 325006, Peoples R China
[7] Hong Kong Univ Sci & Technol, Energy Inst, Hong Kong 999077, Peoples R China
关键词
all-solid-state electrolytes; covalent organic frameworks; lithium metal batteries; poly(ionic liquid); POLYMER ELECTROLYTES; TRANSPORT;
D O I
10.1002/aenm.202400762
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Ionic covalent organic frameworks (iCOFs) are crystalline materials with stable porous structures. They hold great potential for ion transport, particularly as solid-state electrolytes (SSEs) for all-solid-state lithium metal batteries (ASSLMBs). However, achieving an ionic conductivity of over 10(-3) S cm(-1) at room temperature using pure-iCOF-based SSEs, even adding additives such as lithium salts, is challenging as the voids work as strong resistances. Thus, highly conductive iCOFs typically require quasi-solid-state configurations with organic solvents or plasticizers. In this study, composites comprising iCOFs and poly(ionic liquid) (PIL) are prepared to make all-solid-state iCOFs electrolytes with an exceptional ionic conductivity up to 1.50 x 10(-3) S cm(-1) and a high Li+ transference number of > 0.80 at room temperature. Combined experimental and computational studies show that the co-coordination and competitive coordination mechanism established between the PIL, lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), and iCOFs enabled rapid Li+ transport while restricting TFSI- movement. ASSLMB cells, made of composite SSEs and LiFePO4 composite cathode, demonstrate an initial discharge capacity of 141.5 mAh g(-1) at 1C and r.t., with an impressive capacity retention of 87% up to 800 cycles. Overall, this work presents a breakthrough approach for developing advanced SSEs for next-generation high-energy-density ASSLMBs.
引用
收藏
页数:11
相关论文
共 55 条
[11]   Polymer electrolytes and interfaces in solid-state lithium metal batteries [J].
Ding, Peipei ;
Lin, Zhiyuan ;
Guo, Xianwei ;
Wu, Lingqiao ;
Wang, Yongtao ;
Guo, Hongxia ;
Li, Liangliang ;
Yu, Haijun .
MATERIALS TODAY, 2021, 51 :449-474
[12]   Porous covalent organic frameworks for high transference number polymer-based electrolytes [J].
Dong, Derui ;
Zhang, Hui ;
Zhou, Bin ;
Sun, Yufei ;
Zhang, Hailian ;
Cao, Min ;
Li, Jubai ;
Zhou, Han ;
Qian, Hao ;
Lin, Zhiyong ;
Chen, Hongwei .
CHEMICAL COMMUNICATIONS, 2019, 55 (10) :1458-1461
[13]   Toward High-Performance Metal-Organic-Framework-Based Quasi-Solid-State Electrolytes: Tunable Structures and Electrochemical Properties [J].
Dong, Panpan ;
Zhang, Xiahui ;
Hiscox, William ;
Liu, Juejing ;
Zamora, Julio ;
Li, Xiaoyu ;
Su, Muqiao ;
Zhang, Qiang ;
Guo, Xiaofeng ;
McCloy, John ;
Song, Min-Kyu .
ADVANCED MATERIALS, 2023, 35 (32)
[14]   Ionic Covalent Organic Frameworks with Spiroborate Linkage [J].
Du, Ya ;
Yang, Haishen ;
Whiteley, Justin Michael ;
Wan, Shun ;
Jin, Yinghua ;
Lee, Se-Hee ;
Zhang, Wei .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (05) :1737-1741
[15]   Tailoring inorganic-polymer composites for the mass production of solid-state batteries [J].
Fan, Li-Zhen ;
He, Hongcai ;
Nan, Ce-Wen .
NATURE REVIEWS MATERIALS, 2021, 6 (11) :1003-1019
[16]   Covalent Organic Framework with Multi-Cationic Molecular Chains for Gate Mechanism Controlled Superionic Conduction in All-Solid-State Batteries [J].
Gong, Wei ;
Ouyang, Yuan ;
Guo, Sijia ;
Xiao, Yingbo ;
Zeng, Qinghan ;
Li, Dixiong ;
Xie, Yufeng ;
Zhang, Qi ;
Huang, Shaoming .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (25)
[17]   Foldable Solid-State Batteries Enabled by Electrolyte Mediation in Covalent Organic Frameworks [J].
Guo, Dong ;
Shinde, Digambar B. ;
Shin, Woochul ;
Abou-Hamad, Edy ;
Emwas, Abdul-Hamid ;
Lai, Zhiping ;
Manthiram, Arumugam .
ADVANCED MATERIALS, 2022, 34 (23)
[18]   Fast Ion Transport Pathway Provided by Polyethylene Glycol Confined in Covalent Organic Frameworks [J].
Guo, Zhenbin ;
Zhang, Yuanyuan ;
Dong, Yu ;
Li, Jie ;
Li, Siwu ;
Shao, Pengpeng ;
Feng, Xiao ;
Wang, Bo .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2019, 141 (05) :1923-1927
[19]   Crystalline Lithium Imidazolate Covalent Organic Frameworks with High Li-Ion Conductivity [J].
Hu, Yiming ;
Dunlap, Nathan ;
Wan, Shun ;
Lu, Shuanglong ;
Huang, Shaofeng ;
Sellinger, Isaac ;
Ortiz, Michael ;
Jin, Yinghua ;
Lee, Se-hee ;
Zhang, Wei .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2019, 141 (18) :7518-7525
[20]   Challenges in speeding up solid-state battery development [J].
Janek, Juergen ;
Zeier, Wolfgang G. .
NATURE ENERGY, 2023, 8 (03) :230-240