Complexity of 2-Rainbow Total Domination Problem

被引:0
作者
Sumenjak, Tadeja Kraner [1 ,2 ]
Tepeh, Aleksandra [2 ,3 ]
机构
[1] Univ Maribor, FALS, Pivola 10, Hoce 2311, Slovenia
[2] Inst Math Phys & Mech, Jadranska ul 19, Ljubljana 1000, Slovenia
[3] Univ Maribor, FEECS, Koroska cesta 46, Maribor 2000, Slovenia
关键词
Domination; Rainbow domination; Rooted product; NP-complete; RAINBOW DOMINATION;
D O I
10.1007/s40840-024-01747-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we extend the findings of recent studies on k-rainbow total domination by placing our focus on its computational complexity aspects. We show that the problem of determining whether a graph has a 2-rainbow total dominating function of a given weight is NP-complete. This complexity result holds even when restricted to planar graphs. Along the way tight bounds for the k-rainbow total domination number of rooted product graphs are established. In addition, we obtain the closed formula for the k-rainbow total domination number of the corona product G & lowast;H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G*H$$\end{document}, provided that H has enough vertices.
引用
收藏
页数:12
相关论文
共 50 条
[41]   Complexity of Total {k}-Domination and Related Problems [J].
He, Jing ;
Liang, Hongyu .
FRONTIERS IN ALGORITHMICS AND ALGORITHMIC ASPECTS IN INFORMATION AND MANAGEMENT, (FAW-AAIM 2011), 2011, 6681 :147-155
[42]   COMPLEXITY OF CERTAIN FUNCTIONAL VARIANTS OF TOTAL DOMINATION IN CHORDAL BIPARTITE GRAPHS [J].
Pradhan, D. .
DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2012, 4 (03)
[43]   New complexity results on Roman {2}-domination [J].
Fernandez, Lara ;
Leoni, Valeria .
RAIRO-OPERATIONS RESEARCH, 2023, 57 (04) :1905-1912
[44]   On the Rainbow Domination Number of Digraphs [J].
Hao, Guoliang ;
Qian, Jianguo .
GRAPHS AND COMBINATORICS, 2016, 32 (05) :1903-1913
[45]   On the Rainbow Domination Number of Digraphs [J].
Guoliang Hao ;
Jianguo Qian .
Graphs and Combinatorics, 2016, 32 :1903-1913
[46]   On the algorithmic complexity of k-tuple total domination [J].
Lan, James K. ;
Chang, Gerard Jennhwa .
DISCRETE APPLIED MATHEMATICS, 2014, 174 :81-91
[47]   Rainbow domination and related problems on strongly chordal graphs [J].
Chang, Gerard J. ;
Li, Bo-Jr ;
Wu, Jiaojiao .
DISCRETE APPLIED MATHEMATICS, 2013, 161 (10-11) :1395-1401
[48]   Complexity of distance paired-domination problem in graphs [J].
Chang, Gerard J. ;
Panda, B. S. ;
Pradhan, D. .
THEORETICAL COMPUTER SCIENCE, 2012, 459 :89-99
[49]   The complexity of the defensive domination problem in special graph classes [J].
Ekim, Tinaz ;
Farley, Arthur M. ;
Proskurowski, Andrzej .
DISCRETE MATHEMATICS, 2020, 343 (02)
[50]   Hardness results of global total k-domination problem in graphs [J].
Panda, B. S. ;
Goyal, Pooja .
DISCRETE APPLIED MATHEMATICS, 2022, 319 :223-238