Complexity of 2-Rainbow Total Domination Problem

被引:0
作者
Sumenjak, Tadeja Kraner [1 ,2 ]
Tepeh, Aleksandra [2 ,3 ]
机构
[1] Univ Maribor, FALS, Pivola 10, Hoce 2311, Slovenia
[2] Inst Math Phys & Mech, Jadranska ul 19, Ljubljana 1000, Slovenia
[3] Univ Maribor, FEECS, Koroska cesta 46, Maribor 2000, Slovenia
关键词
Domination; Rainbow domination; Rooted product; NP-complete; RAINBOW DOMINATION;
D O I
10.1007/s40840-024-01747-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we extend the findings of recent studies on k-rainbow total domination by placing our focus on its computational complexity aspects. We show that the problem of determining whether a graph has a 2-rainbow total dominating function of a given weight is NP-complete. This complexity result holds even when restricted to planar graphs. Along the way tight bounds for the k-rainbow total domination number of rooted product graphs are established. In addition, we obtain the closed formula for the k-rainbow total domination number of the corona product G & lowast;H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G*H$$\end{document}, provided that H has enough vertices.
引用
收藏
页数:12
相关论文
共 50 条
[31]   Bounding the k-rainbow total domination number [J].
Ojakian, Kerry ;
Skrekovski, Riste ;
Tepeh, Aleksandra .
DISCRETE MATHEMATICS, 2021, 344 (08)
[32]   A lower bound for 2-rainbow domination number of generalized Petersen graphs P(n,3) [J].
Tong Chunling ;
Lin Xiaohui ;
Yang Yuansheng ;
Zhang Baosheng ;
Zheng Xianchen .
ARS COMBINATORIA, 2011, 102 :483-492
[33]   Further results on outer independent 2-rainbow dominating functions of graphs [J].
Samadi, Babak ;
Soltankhah, Nasrin .
RAIRO-OPERATIONS RESEARCH, 2023, 57 (04) :1983-1993
[34]   On the 2-rainbow bondage number of planar graphs [J].
Amjadi, J. ;
Parnian, A. .
ARS COMBINATORIA, 2016, 126 :395-405
[35]   Independent Rainbow Domination of Graphs [J].
Shao, Zehui ;
Li, Zepeng ;
Peperko, Aljosa ;
Wan, Jiafu ;
Zerovnik, Janez .
BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2019, 42 (02) :417-435
[36]   Independent Rainbow Domination of Graphs [J].
Zehui Shao ;
Zepeng Li ;
Aljoša Peperko ;
Jiafu Wan ;
Janez Žerovnik .
Bulletin of the Malaysian Mathematical Sciences Society, 2019, 42 :417-435
[37]   On the computational complexity of upper total domination [J].
Fang, QZ .
DISCRETE APPLIED MATHEMATICS, 2004, 136 (01) :13-22
[38]   Rainbow domination in the lexicographic product of graphs [J].
Sumenjak, Tadeja Kraner ;
Rall, Douglas F. ;
Tepeh, Aleksandra .
DISCRETE APPLIED MATHEMATICS, 2013, 161 (13-14) :2133-2141
[39]   THE COMPLEXITY OF SECURE DOMINATION PROBLEM IN GRAPHS [J].
Wang, Haichao ;
Zhao, Yancai ;
Deng, Yunping .
DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2018, 38 (02) :385-396
[40]   Rainbow edge-coloring and rainbow domination [J].
LeSaulnier, Timothy D. ;
West, Douglas B. .
DISCRETE MATHEMATICS, 2013, 313 (19) :2020-2025