Ab initio constraints on the melting of silica at high pressures up to 500 GPa

被引:3
作者
Geng, Ming [1 ,2 ]
Mohn, Chris E. [1 ,2 ,3 ,4 ]
机构
[1] Univ Oslo, Ctr Earth Evolut & Dynam, N-0315 Oslo, Norway
[2] Univ Oslo, Ctr Planetary Habitabil, N-0315 Oslo, Norway
[3] Univ Oslo, Dept Chem, N-0371 Oslo, Norway
[4] Univ Oslo, Ctr Mat Sci & Nanotechnol, N-0371 Oslo, Norway
关键词
COESITE-STISHOVITE TRANSITION; MOLECULAR-DYNAMICS; LIQUID;
D O I
10.1103/PhysRevB.109.024106
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The melting curve of pure silica (SiO2) was determined using ab initio density functional theory together with the solid -liquid coexisting approach, thermodynamic integration, and the Z method. The melting curves are consistent with a smooth, slow increase in a large region from 50 GPa (dT/dP ti 15 K/GPa) to about 500 GPa (dT/dP ti 5 K/GPa) without any abrupt changes at around 120 and 300 GPa as seen in some recent experimental and computational studies. The topography of the melting curve above 50 GPa is consistent with a gradual change in the distribution of the Si coordination numbers in the liquid state and the absence of large changes in the density following solid -solid phase transitions. The pair distribution functions show that the structural correlation in the liquid is mainly short range and that the Si -O bond is stiff. The densification of the melt structure with pressure above 50 GPa is therefore due to an increase in seven- and eightfold coordinated silicon.
引用
收藏
页数:9
相关论文
共 46 条
[1]   Thermodynamic properties of stishovite by low-temperature heat capacity measurements and the coesite-stishovite transition boundary [J].
Akaogi, M. ;
Oohata, M. ;
Kojitani, H. ;
Kawaji, H. .
AMERICAN MINERALOGIST, 2011, 96 (8-9) :1325-1330
[2]   COESITE-STISHOVITE TRANSITION [J].
AKIMOTO, SI ;
SYONO, Y .
JOURNAL OF GEOPHYSICAL RESEARCH, 1969, 74 (06) :1653-&
[3]  
Akins JA, 2002, GEOPHYS RES LETT, V29, DOI 10.1029/2001GL014806
[4]   The kinetics of homogeneous melting beyond the limit of superheating [J].
Alfe, D. ;
Cazorla, C. ;
Gillan, M. J. .
JOURNAL OF CHEMICAL PHYSICS, 2011, 135 (02)
[5]   Melting behavior of SiO2 up to 120 GPa [J].
Andrault, D. ;
Morard, G. ;
Garbarino, G. ;
Mezouar, M. ;
Bouhifd, M. A. ;
Kawamoto, T. .
PHYSICS AND CHEMISTRY OF MINERALS, 2020, 47 (02)
[6]   Comment on: Melting behavior of SiO2 up to 120 GPa (Andrault et al. 2020) [J].
Andrault, Denis ;
Pison, L. ;
Morard, G. ;
Garbarino, G. ;
Mezouar, M. ;
Bouhifd, M. A. ;
Kawamoto, T. .
PHYSICS AND CHEMISTRY OF MINERALS, 2022, 49 (02)
[7]  
APS, ABOUT US, DOI [10.1103/PhysRevB.109.024106, DOI 10.1103/PHYSREVB.109.024106]
[8]   Melting and critical superheating [J].
Belonoshko, AB ;
Skorodumova, NV ;
Rosengren, A ;
Johansson, B .
PHYSICAL REVIEW B, 2006, 73 (01)
[9]   MOLECULAR-DYNAMICS OF STISHOVITE MELTING [J].
BELONOSHKO, AB ;
DUBROVINSKY, LS .
GEOCHIMICA ET COSMOCHIMICA ACTA, 1995, 59 (09) :1883-1889
[10]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979