Energy generation from municipal solid waste. Thermodynamic strategies to optimize the performance of thermal power plants

被引:0
作者
Montiel-Bohórquez N.D. [1 ]
Pérez J.F. [1 ]
机构
[1] Grupo de manejo eficiente de la energía (GIMEL), Departamento de ingeniería mecánica, Facultad de Ingeniería, Universidad de Antioquia, Calle 67 No. 53-108, Medellín
来源
Informacion Tecnologica | 2019年 / 30卷 / 01期
关键词
Energy recovery; Gasification; Municipal solid waste; Thermo-chemical equilibrium;
D O I
10.4067/S0718-07642019000100273
中图分类号
学科分类号
摘要
In this study, thermodynamic strategies are determined for the energy conversion of Municipal Solid Wastes (MSW) in incineration plants under sub-stoichiometric conditions. Energy generation from MSW is an alternative to mitigate the environmental impacts derived by their final disposal, being the production rate of MSW in Medellin city (Colombia) of about 1800 ton/day. The analysis is conducted by means of a thermochemical equilibrium model of the gasification process, where the effect of moisture content and fuel-air equivalence ratio on the thermochemical process is studied. The energy potential of MSW from the city is between 28 and 44 MWe. The thermodynamic strategies for energy recovery from MSW in incineration plants at sub-stoichiometric conditions, under auto-thermal regimens and avoiding ash fusion, establish that the process must be carried out with a fuel-air equivalence ratio between 1.5 and 3.3, regardless of the moisture content of the MSW. 2019 © Centro de Informacion Tecnologica. All Rights Reserved.
引用
收藏
页码:273 / 283
页数:10
相关论文
共 34 条
  • [11] Jarungthammachote S., Dutta A., Thermodynamic equilibrium model and second law analysis of a downdraft waste gasifier, Energy, 32, 9, pp. 1660-1669, (2007)
  • [12] Kotas T.J., The Exergy Method of Thermal Plant Analysis, (2012)
  • [13] Kumar A., Samadder S.R., A review on technological options of waste to energy for effective management of municipal solid waste, Waste Management, 69, pp. 407-422, (2017)
  • [14] Kumar A., Samadder S.R., An empirical model for prediction of household solid waste generation rate-A case study of Dhanbad, India, Waste Management, 68, 9, pp. 3-15, (2017)
  • [15] Larochelle L., Turner M., LaGiglia M., Evaluation of NAMA Opportunities in Colombia’S Solid Waste Sector, (2012)
  • [16] Luz F.C., Rocha M.H., Techno-economic analysis of municipal solid waste gasification for electricity generation in Brazil, Energy Conversion and Management, 103, pp. 321-337, (2015)
  • [17] Mendiburu A.Z., Roberts J.J., Carvalho J.A., Silveira J.L., Thermodynamic analysis and comparison of downdraft gasifiers integrated with gas turbine, spark and compression ignition engines for distributed power generation, Applied Thermal Engineering, 66, 1-2, pp. 290-297, (2014)
  • [18] Mendoza J.M., Bula A.J., Gomez R.D., Corredor L.A., Análisis exergético de la gasificación de biomasa, Inf. Tecnológica, 23, 5, pp. 85-96, (2012)
  • [19] Moreno J., Moral R., Garcia-Morales J.I., Pascual J.A., Bernal M.P., De Residuo A Recurso, El Camino Hacia La Sostenibilidad, 1ª Ed., pp. 143-397, (2016)
  • [20] Nordi G.H., Palacios-Bereche R., Gallego A.G., Nebra S.A., Electricity production from municipal solid waste in Brazil, Waste Management & Research, 35, 7, pp. 709-720, (2017)