Energy generation from municipal solid waste. Thermodynamic strategies to optimize the performance of thermal power plants

被引:0
作者
Montiel-Bohórquez N.D. [1 ]
Pérez J.F. [1 ]
机构
[1] Grupo de manejo eficiente de la energía (GIMEL), Departamento de ingeniería mecánica, Facultad de Ingeniería, Universidad de Antioquia, Calle 67 No. 53-108, Medellín
来源
Informacion Tecnologica | 2019年 / 30卷 / 01期
关键词
Energy recovery; Gasification; Municipal solid waste; Thermo-chemical equilibrium;
D O I
10.4067/S0718-07642019000100273
中图分类号
学科分类号
摘要
In this study, thermodynamic strategies are determined for the energy conversion of Municipal Solid Wastes (MSW) in incineration plants under sub-stoichiometric conditions. Energy generation from MSW is an alternative to mitigate the environmental impacts derived by their final disposal, being the production rate of MSW in Medellin city (Colombia) of about 1800 ton/day. The analysis is conducted by means of a thermochemical equilibrium model of the gasification process, where the effect of moisture content and fuel-air equivalence ratio on the thermochemical process is studied. The energy potential of MSW from the city is between 28 and 44 MWe. The thermodynamic strategies for energy recovery from MSW in incineration plants at sub-stoichiometric conditions, under auto-thermal regimens and avoiding ash fusion, establish that the process must be carried out with a fuel-air equivalence ratio between 1.5 and 3.3, regardless of the moisture content of the MSW. 2019 © Centro de Informacion Tecnologica. All Rights Reserved.
引用
收藏
页码:273 / 283
页数:10
相关论文
共 34 条
  • [1] Ahmed I., Gupta A.K., Evolution of syngas from cardboard gasification, Applied Energy, 86, 9, pp. 1732-1740, (2009)
  • [2] Arena U., Process and technological aspects of municipal solid waste gasification. A review, Waste Management, 32, 4, pp. 625-639, (2012)
  • [3] Balcazar J.G., Dias R.A., Balestieri J.A., Analysis of hybrid waste-to-energy for medium-sized cities, Energy, 55, pp. 728-741, (2013)
  • [4] Bhavanam A., Sastry R.C., Modelling of solid waste gasification process for synthesis gas production, J. of Scientific and Industrial Research, 72, pp. 611-616, (2013)
  • [5] Castaldi M., Van Deventer J., Progress and prospects in the field of biomass and waste to energy and added-value materials, Waste and Biomass Valorization, 8, 6, pp. 1875-1884, (2017)
  • [6] Castell X.E., Biomasa Y Bioenergía, (2012)
  • [7] Garcia C.A., Vaca M.L., Talero G.F., Aprovechamiento de biomasa peletizada en el sector ladrillero en Bogotá-Colombia: Análisis energético y ambiental, Inf. Tecnológica, 24, 3, pp. 115-120, (2013)
  • [8] Haydary J., Susa D., Dudas J., Pyrolysis of aseptic packages (tetrapak) in a laboratory screw type reactor and secondary thermal/catalytic tar decomposition, Waste Management, 33, 5, pp. 1136-1141, (2013)
  • [9] Hoornweg D., Bhada-Tata P., What a waste: A global review of solid waste management, Urban Development Series Knowledge, (2012)
  • [10] Ibarluzea J., Basterretxea M., Incineación De Residuos Urbanos Y Salud Pública, (2004)