The Cauchy Problem for the Nonlinear Complex Modified Korteweg-de Vries Equation with Additional Terms in the Class of Periodic Infinite-Gap Functions

被引:0
|
作者
Khasanov, A. B. [1 ,2 ]
Khasanov, T. G. [3 ]
机构
[1] Samarkand State Univ, Samarkand, Uzbekistan
[2] VI Romanovskii Inst Math, Samarkand Div, Samarkand, Uzbekistan
[3] Urgench State Univ, Urgench, Uzbekistan
关键词
complex modified Korteweg-de Vries equation; Dirac operator; spectral data; system of Dubrovin differential equations; trace formulas; 517.957; SELF-CONSISTENT SOURCE; SINE-GORDON EQUATION; INVERSE PROBLEM; SOLITON-SOLUTIONS; MULTISOLITON SOLUTIONS; SCHRODINGER-EQUATION; INSTABILITY ZONES; INTEGRATION; ASYMPTOTICS; SCATTERING;
D O I
10.1134/S0037446624040128
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We use the inverse spectral problem method for integrating the nonlinear complex modified Korteweg-de Vries equation (cmKdV) with additional terms in the class of periodic infinite-gap functions. Also, we deduce the evolution of the spectral data of the periodic Dirac operator whose coefficient is a solution to cmKdV. We prove that the Cauchy problem is solvable for an infinite system of Dubrovin differential equations in the class of six times continuously differentiable periodic infinite-gap functions. Moreover, we establish the solvability of the Cauchy problem for cmKdV with additional terms in the class of six times continuously differentiable periodic infinite-gap functions.
引用
收藏
页码:846 / 868
页数:23
相关论文
共 50 条
  • [21] Multiple solitons and breathers on periodic backgrounds in the complex modified Korteweg-de Vries equation
    Rao, Jiguang
    Mihalache, Dumitru
    He, Jingsong
    APPLIED MATHEMATICS LETTERS, 2025, 160
  • [22] Multisymplectic Schemes for the Complex Modified Korteweg-de Vries Equation
    Aydin, A.
    Karasoezen, B.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, 2008, 1048 : 60 - +
  • [23] Periodic solutions of the (2+1)-dimensional complex modified Korteweg-de Vries equation
    Yuan, Feng
    Jiang, Ying
    MODERN PHYSICS LETTERS B, 2020, 34 (18):
  • [24] Integration of the negative order Korteweg-de Vries equation with a self-consistent source in the class of periodic functions
    Urazboev, Gayrat Urazalievich
    Hasanov, Muzaffar Masharipovich
    VESTNIK UDMURTSKOGO UNIVERSITETA-MATEMATIKA MEKHANIKA KOMPYUTERNYE NAUKI, 2022, 32 (02): : 228 - 239
  • [25] WELL-POSEDNESS OF THE CAUCHY PROBLEM FOR THE KORTEWEG-DE VRIES EQUATION AT THE CRITICAL REGULARITY
    Kishimoto, Nobu
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2009, 22 (5-6) : 447 - 464
  • [26] Integration of negative-order modified Korteweg–de Vries equation in a class of periodic functions
    G. U. Urazboev
    A. B. Yakhshimuratov
    M. M. Khasanov
    Theoretical and Mathematical Physics, 2023, 217 : 1689 - 1699
  • [27] ON INTEGRATION OF THE LOADED KORTEWEG-DE VRIES EQUATION IN THE CLASS OF RAPIDLY DECREASING FUNCTIONS
    Hasanov, Aknazar B.
    Hoitmetov, Umid A.
    PROCEEDINGS OF THE INSTITUTE OF MATHEMATICS AND MECHANICS, 2021, 47 (02): : 250 - 261
  • [28] Integration of the Korteweg-de Vries type equations with a loaded term in the class of periodic functions
    Matyoqubov, M. M.
    IZVESTIYA INSTITUTA MATEMATIKI I INFORMATIKI-UDMURTSKOGO GOSUDARSTVENNOGO UNIVERSITETA, 2024, 64 : 60 - 69
  • [29] Compactons and Riemann Waves of an Extended Modified Korteweg-de Vries Equation with Nonlinear Dispersion
    Popov, S. P.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2018, 58 (03) : 437 - 448
  • [30] Rogue waves on an elliptic function background in complex modified Korteweg-de Vries equation
    Sinthuja, N.
    Manikandan, K.
    Senthilvelan, M.
    PHYSICA SCRIPTA, 2021, 96 (10)