Stability of periodic Hamiltonian systems with equal dissipation

被引:0
作者
Ramirez-Barrios, Miguel [1 ]
Collado, Joaquin [2 ]
Dohnal, Fadi [3 ]
机构
[1] UPIBI, Inst Politecn Nacl, Ave Luis Enrique Erro S-N, Mexico City 07738, Mexico
[2] CINVESTAV IPN, Dept Automat Control, Ave IPN 2508, Mexico City 07360, Mexico
[3] Vorarlberg Univ Appl Sci, Res Ctr Microtechnol, A-6850 Dornbirn, Austria
关键词
Parametric resonance; Floquet theory; Hamiltonian systems; Coupled Mathieu equations; Symplectic matrices; LINEAR-STABILITY; RESONANCE; EQUATION;
D O I
10.1007/s11071-024-09913-0
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This contribution highlights that a linear periodic Hamiltonian system preserves a symplectic structure if a particular dissipation is present. This specific structure is defined by the algebraic properties of mu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}-symplectic matrices and symmetry of its eigenvalues. A method is established for the stability analysis of this class of systems consisting of damped and coupled Mathieu equations. It enables an efficient computation of the corresponding stability chart. One main strength of the method is the calculation of the stability chart even for large parameter values, especially for the amplitude of the parametric excitation and the system response itself. The proposed stability analysis is applied in detail on two examples consisting of two coupled equations.
引用
收藏
页码:17033 / 17053
页数:21
相关论文
共 42 条
[1]  
Adrianova L.Y., 1995, AM MATH SOCIATY
[2]   Non-trivial solutions and their stability in a two-degree-of-freedom Mathieu-Duffing system [J].
Barakat, Ahmed A. A. ;
Weig, Eva M. M. ;
Hagedorn, Peter .
NONLINEAR DYNAMICS, 2023, 111 (24) :22119-22136
[3]   Sorting-free Hill-based stability analysis of periodic solutions through Koopman analysis [J].
Bayer, Fabia ;
Leine, Remco I. .
NONLINEAR DYNAMICS, 2023, 111 (09) :8439-8466
[4]   Stability boundaries of a Mathieu equation having PT symmetry [J].
Brandao, P. A. .
PHYSICS LETTERS A, 2019, 383 (25) :3043-3046
[5]  
Brown B.M., 2013, Birkha, DOI 10.1007/978-3-0348-0528-51
[6]   Normal forms and the structure of resonance sets in nonlinear time-periodic systems [J].
Butcher, EA ;
Sinha, SC .
NONLINEAR DYNAMICS, 2000, 23 (01) :35-55
[7]  
Champneys A, 2011, Mathematics of complexity and dynamical systems, P183, DOI [DOI 10.1007/978-1-4614-1806-1_13, 10.1007/978-1-4614-1806-1_13]
[8]  
Collado J., 2018, HILL EQUATION 1 2 DE, P43, DOI [10.1007/978-3-319-62464-83, DOI 10.1007/978-3-319-62464-8_3]
[9]   Effects of anisotropic supports on the stability of parametrically excited slender rotors [J].
De Felice, Alessandro ;
Sorrentino, Silvio .
NONLINEAR DYNAMICS, 2022, 109 (02) :793-813
[10]   Parametric resonance and pattern selection in an array of microcantilevers interacting through fringing electrostatic fields [J].
Dick, Nir ;
Krylov, Slava .
NONLINEAR DYNAMICS, 2022, 107 (02) :1703-1723