Deep Learning for Chest X-ray Diagnosis: Competition Between Radiologists with or Without Artificial Intelligence Assistance

被引:4
作者
Guo, Lili [1 ]
Zhou, Changsheng [2 ]
Xu, Jingxu [3 ]
Huang, Chencui [3 ]
Yu, Yizhou [3 ]
Lu, Guangming [2 ]
机构
[1] Nanjing Med Univ, Affiliated Huaian 1 Peoples Hosp, Dept Radiol, Huaian 223300, Peoples R China
[2] Nanjing Univ, Jinling Hosp, Med Sch, Dept Med Imaging, Nanjing 210002, Peoples R China
[3] Beijing Deepwise & League PHD Technol Co Ltd, Deepwise AI Lab, Beijing 100080, Peoples R China
来源
JOURNAL OF IMAGING INFORMATICS IN MEDICINE | 2024年 / 37卷 / 03期
基金
国家重点研发计划;
关键词
Chest X-ray; Artificial intelligence; Competition; Deep learning; Score; NETWORK;
D O I
10.1007/s10278-024-00990-6
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
This study aimed to assess the performance of a deep learning algorithm in helping radiologist achieve improved efficiency and accuracy in chest radiograph diagnosis. We adopted a deep learning algorithm to concurrently detect the presence of normal findings and 13 different abnormalities in chest radiographs and evaluated its performance in assisting radiologists. Each competing radiologist had to determine the presence or absence of these signs based on the label provided by the AI. The 100 radiographs were randomly divided into two sets for evaluation: one without AI assistance (control group) and one with AI assistance (test group). The accuracy, false-positive rate, false-negative rate, and analysis time of 111 radiologists (29 senior, 32 intermediate, and 50 junior) were evaluated. A radiologist was given an initial score of 14 points for each image read, with 1 point deducted for an incorrect answer and 0 points given for a correct answer. The final score for each doctor was automatically calculated by the backend calculator. We calculated the mean scores of each radiologist in the two groups (the control group and the test group) and calculated the mean scores to evaluate the performance of the radiologists with and without AI assistance. The average score of the 111 radiologists was 597 (587-605) in the control group and 619 (612-626) in the test group (P < 0.001). The time spent by the 111 radiologists on the control and test groups was 3279 (2972-3941) and 1926 (1710-2432) s, respectively (P < 0.001). The performance of the 111 radiologists in the two groups was evaluated by the area under the receiver operating characteristic curve (AUC). The radiologists showed better performance on the test group of radiographs in terms of normal findings, pulmonary fibrosis, heart shadow enlargement, mass, pleural effusion, and pulmonary consolidation recognition, with AUCs of 1.0, 0.950, 0.991, 1.0, 0.993, and 0.982, respectively. The radiologists alone showed better performance in aortic calcification (0.993), calcification (0.933), cavity (0.963), nodule (0.923), pleural thickening (0.957), and rib fracture (0.987) recognition. This competition verified the positive effects of deep learning methods in assisting radiologists in interpreting chest X-rays. AI assistance can help to improve both the efficacy and efficiency of radiologists.
引用
收藏
页码:922 / 934
页数:13
相关论文
共 26 条
[11]   A hierarchical knowledge-based approach for retrieving similar medical images described with semantic annotations [J].
Kurtz, Camille ;
Beaulieu, Christopher F. ;
Napel, Sandy ;
Rubin, Daniel L. .
JOURNAL OF BIOMEDICAL INFORMATICS, 2014, 49 :227-244
[12]   Application of Artificial Intelligence-Based Technologies in the Healthcare Industry: Opportunities and Challenges [J].
Lee, DonHee ;
Yoon, Seong No .
INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2021, 18 (01) :1-18
[13]   A Structure-Aware Relation Network for Thoracic Diseases Detection and Segmentation [J].
Lian, Jie ;
Liu, Jingyu ;
Zhang, Shu ;
Gao, Kai ;
Liu, Xiaoqing ;
Zhang, Dingwen ;
Yu, Yizhou .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2021, 40 (08) :2042-2052
[14]   Human-machine partnership with artificial intelligence for chest radiograph diagnosis [J].
Patel, Bhavik N. ;
Rosenberg, Louis ;
Willcox, Gregg ;
Baltaxe, David ;
Lyons, Mimi ;
Irvin, Jeremy ;
Rajpurkar, Pranav ;
Amrhein, Timothy ;
Gupta, Rajan ;
Halabi, Safwan ;
Langlotz, Curtis ;
Lo, Edward ;
Mammarappallil, Joseph ;
Mariano, A. J. ;
Riley, Geoffrey ;
Seekins, Jayne ;
Shen, Luyao ;
Zucker, Evan ;
Lungren, Matthew .
NPJ DIGITAL MEDICINE, 2019, 2 (1)
[15]   Learning to detect chest radiographs containing pulmonary lesions using visual attention networks [J].
Pesce, Emanuele ;
Withey, Samuel Joseph ;
Ypsilantis, Petros-Pavlos ;
Bakewell, Robert ;
Goh, Vicky ;
Montana, Giovanni .
MEDICAL IMAGE ANALYSIS, 2019, 53 :26-38
[16]   Using handpicked features in conjunction with ResNet-50 for improved detection of COVID-19 from chest X-ray images [J].
Rajpal, Sheetal ;
Lakhyani, Navin ;
Singh, Ayush Kumar ;
Kohli, Rishav ;
Kumar, Naveen .
CHAOS SOLITONS & FRACTALS, 2021, 145
[17]   CheXaid: deep learning assistance for physician diagnosis of tuberculosis using chest x-rays in patients with HIV [J].
Rajpurkar, Pranav ;
O'Connell, Chloe ;
Schechter, Amit ;
Asnani, Nishit ;
Li, Jason ;
Kiani, Amirhossein ;
Ball, Robyn L. ;
Mendelson, Marc ;
Maartens, Gary ;
van Hoving, Daniel J. ;
Griesel, Rulan ;
Ng, Andrew Y. ;
Boyles, Tom H. ;
Lungren, Matthew P. .
NPJ DIGITAL MEDICINE, 2020, 3 (01)
[18]   Deep learning for chest radiograph diagnosis: A retrospective comparison of the CheXNeXt algorithm to practicing radiologists [J].
Rajpurkar, Pranav ;
Irvin, Jeremy ;
Ball, Robyn L. ;
Zhu, Kaylie ;
Yang, Brandon ;
Mehta, Hershel ;
Duan, Tony ;
Ding, Daisy ;
Bagul, Aarti ;
Langlotz, Curtis P. ;
Patel, Bhavik N. ;
Yeom, Kristen W. ;
Shpanskaya, Katie ;
Blankenberg, Francis G. ;
Seekins, Jayne ;
Amrhein, Timothy J. ;
Mong, David A. ;
Halabi, Safwan S. ;
Zucker, Evan J. ;
Ng, Andrew Y. ;
Lungren, Matthew P. .
PLOS MEDICINE, 2018, 15 (11)
[19]  
Sa R, 2017, IEEE ENG MED BIO, P564, DOI 10.1109/EMBC.2017.8036887
[20]   CheXLocNet: Automatic localization of pneumothorax in chest radiographs using deep convolutional neural networks [J].
Wang, Hongyu ;
Gu, Hong ;
Qin, Pan ;
Wang, Jia .
PLOS ONE, 2020, 15 (11)