Artificial intelligence in kidney transplant pathology

被引:0
作者
Buelow, Roman David [1 ]
Lan, Yu-Chia [1 ]
Amann, Kerstin [2 ]
Boor, Peter [1 ,3 ,4 ]
机构
[1] Univ Klinikum RWTH Aachen, Inst Pathol, Sekt Nephropathol, Aachen, Germany
[2] Friedrich Alexander Univ Erlangen Nurnberg, Inst Pathol, Abt Nephropathol, Univ Klinikum Erlangen, Erlangen, Germany
[3] Univ Klinikum RWTH Aachen, Med Klin II, Aachen, Germany
[4] Univ Klinikum RWTH Aachen, Inst Pathol, Sekt Nephropathol, Pauwelsstr 30, D-52074 Aachen, Germany
来源
PATHOLOGIE | 2024年 / 45卷 / 04期
基金
欧盟地平线“2020”; 欧洲研究理事会;
关键词
Histomorphometry; Kidney transplantation; Deep learning; Computer assistance; Datenintegration; FIBROSIS;
D O I
10.1007/s00292-024-01324-7
中图分类号
R36 [病理学];
学科分类号
100104 ;
摘要
Background: Artificial intelligence (AI) systems have showed promising results in digital pathology, including digital nephropathology and specifically also kidney transplant pathology. Aim: Summarize the current state of research and limitations in the field of AI in kidney transplant pathology diagnostics and provide a future outlook. Materials and methods: Literature search in PubMed and Web of Science using the search terms "deep learning", "transplant", and "kidney". Based on these results and studies cited in the identified literature, a selection was made of studies that have a histopathological focus and use AI to improve kidney transplant diagnostics. Results and Conclusion: Many studies have already made important contributions, particularly to the automation of the quantification of some histopathological lesions in nephropathology. This likely can be extended to automatically quantify all relevant lesions for a kidney transplant, such as Banff lesions. Important limitations and challenges exist in the collection of representative data sets and the updates of Banff classification, making large-scale studies challenging. The already positive study results make future AI support in kidney transplant pathology appear likely.
引用
收藏
页码:277 / 283
页数:7
相关论文
共 28 条
  • [1] Extending the landscape of omics technologies by pathomics
    Buelow, Roman D.
    Hoelscher, David L.
    Costa, Ivan G.
    Boor, Peter
    [J]. NPJ SYSTEMS BIOLOGY AND APPLICATIONS, 2023, 9 (01)
  • [2] Automated detection algorithm for C4d immunostaining showed comparable diagnostic performance to pathologists in renal allograft biopsy
    Choi, Gyuheon
    Kim, Young-Gon
    Cho, Haeyon
    Kim, Namkug
    Lee, Hyunna
    Moon, Kyung Chul
    Go, Heounjeong
    [J]. MODERN PATHOLOGY, 2020, 33 (08) : 1626 - 1634
  • [3] Image Analysis Pipeline for Renal Allograft Evaluation and Fibrosis Quantification
    Farris, Alton Brad
    Vizcarra, Juan
    Amgad, Mohamed
    Cooper, Lee Alex Donald
    Gutman, David
    Hogan, Julien
    [J]. KIDNEY INTERNATIONAL REPORTS, 2021, 6 (07): : 1878 - 1887
  • [4] Adversarial attacks and adversarial robustness in computational pathology
    Ghaffari Laleh, Narmin
    Truhn, Daniel
    Veldhuizen, Gregory Patrick
    Han, Tianyu
    van Treeck, Marko
    Buelow, Roman D.
    Langer, Rupert
    Dislich, Bastian
    Boor, Peter
    Schulz, Volkmar
    Kather, Jakob Nikolas
    [J]. NATURE COMMUNICATIONS, 2022, 13 (01)
  • [5] Quantitative assessment of inflammatory infiltrates in kidney transplant biopsies using multiplex tyramide signal amplification and deep learning
    Hermsen, Meyke
    Volk, Valery
    Brasen, Jan Hinrich
    Geijs, Daan J.
    Gwinner, Wilfried
    Kers, Jesper
    Linmans, Jasper
    Schaadt, Nadine S.
    Schmitz, Jessica
    Steenbergen, Eric J.
    Swiderska-Chadaj, Zaneta
    Smeets, Bart
    Hilbrands, Luuk B.
    Feuerhake, Friedrich
    van der Laak, Jeroen A. W. M.
    [J]. LABORATORY INVESTIGATION, 2021, 101 (08) : 970 - 982
  • [6] Convolutional Neural Networks for the Evaluation of Chronic and Inflammatory Lesions in Kidney Transplant Biopsies
    Hermsen, Meyke
    Ciompi, Francesco
    Adefidipe, Adeyemi
    Denic, Aleksandar
    Dendooven, Amelie
    Smith, Byron H.
    van Midden, Dominique
    Braesen, Jan Hinrich
    Kers, Jesper
    Stegall, Mark D.
    Bandi, Peter
    Nguyen, Tri
    Swiderska-Chadaj, Zaneta
    Smeets, Bart
    Hilbrands, Luuk B.
    van der Laak, Jeroen A. W. M.
    [J]. AMERICAN JOURNAL OF PATHOLOGY, 2022, 192 (10) : 1418 - 1432
  • [7] Deep Learning-Based Histopathologic Assessment of Kidney Tissue
    Hermsen, Meyke
    de Bel, Thomas
    den Boer, Marjolijn
    Steenbergen, Eric J.
    Kers, Jesper
    Florquin, Sandrine
    Roelofs, Joris J. T. H.
    Stegall, Mark D.
    Alexander, Mariam P.
    Smith, Byron H.
    Smeets, Bart
    Hilbrands, Luuk B.
    van der Laak, Jeroen A. W. M.
    [J]. JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2019, 30 (10): : 1968 - 1979
  • [8] Next-Generation Morphometry for pathomics-data mining in histopathology
    Hoelscher, David L.
    Bouteldja, Nassim
    Joodaki, Mehdi
    Russo, Maria L.
    Lan, Yu-Chia
    Sadr, Alireza Vafaei
    Cheng, Mingbo
    Tesar, Vladimir
    Stillfried, Saskia V.
    Klinkhammer, Barbara M.
    Barratt, Jonathan
    Floege, Juergen
    Roberts, Ian S. D.
    Coppo, Rosanna
    Costa, Ivan G.
    Buelow, Roman D.
    Boor, Peter
    [J]. NATURE COMMUNICATIONS, 2023, 14 (01)
  • [9] Automated evaluation with deep learning of total interstitial inflammation and peritubular capillaritis on kidney biopsies
    Jacq, Amelie
    Tarris, Georges
    Jaugey, Adrien
    Paindavoine, Michel
    Marechal, Elise
    Bard, Patrick
    Rebibou, Jean-Michel
    Ansart, Manon
    Calmo, Doris
    Bamoulid, Jamal
    Tinel, Claire
    Ducloux, Didier
    Crepin, Thomas
    Chabannes, Melchior
    Funes de la Vega, Mathilde
    Felix, Sophie
    Martin, Laurent
    Legendre, Mathieu
    [J]. NEPHROLOGY DIALYSIS TRANSPLANTATION, 2023, 38 (12) : 2786 - 2798
  • [10] The vendor-agnostic EMPAIA platform for integrating AI applications into digital pathology infrastructures
    Jansen, Christoph
    Lindequist, Bjoern
    Strohmenger, Klaus
    Romberg, Daniel
    Kuester, Tobias
    Weiss, Nick
    Franz, Michael
    Schwen, Lars Ole
    Evans, Theodore
    Homeyer, Andre
    Zerbe, Norman
    [J]. FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2023, 140 : 209 - 224