A comprehensive workflow for optimizing RNA-seq data analysis

被引:7
|
作者
Jiang, Gao [1 ]
Zheng, Juan-Yu [1 ]
Ren, Shu-Ning [2 ]
Yin, Weilun [2 ]
Xia, Xinli [2 ]
Li, Yun [1 ]
Wang, Hou-Ling [2 ]
机构
[1] Beijing Forestry Univ, Sch Artificial Intelligence, Sch Informat Sci & Technol, Beijing 100083, Peoples R China
[2] Beijing Forestry Univ, Coll Biol Sci & Technol, Natl Engn Res Ctr Tree Breeding & Ecol Restorat, State Key Lab Tree Genet & Breeding, Beijing 100083, Peoples R China
来源
BMC GENOMICS | 2024年 / 25卷 / 01期
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
RNA-seq data; Differential gene analysis; Software comparison; DIFFERENTIAL EXPRESSION; ALIGNMENT; PROGRAM; HISAT;
D O I
10.1186/s12864-024-10414-y
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background Current RNA-seq analysis software for RNA-seq data tends to use similar parameters across different species without considering species-specific differences. However, the suitability and accuracy of these tools may vary when analyzing data from different species, such as humans, animals, plants, fungi, and bacteria. For most laboratory researchers lacking a background in information science, determining how to construct an analysis workflow that meets their specific needs from the array of complex analytical tools available poses a significant challenge.Results By utilizing RNA-seq data from plants, animals, and fungi, it was observed that different analytical tools demonstrate some variations in performance when applied to different species. A comprehensive experiment was conducted specifically for analyzing plant pathogenic fungal data, focusing on differential gene analysis as the ultimate goal. In this study, 288 pipelines using different tools were applied to analyze five fungal RNA-seq datasets, and the performance of their results was evaluated based on simulation. This led to the establishment of a relatively universal and superior fungal RNA-seq analysis pipeline that can serve as a reference, and certain standards for selecting analysis tools were derived for reference. Additionally, we compared various tools for alternative splicing analysis. The results based on simulated data indicated that rMATS remained the optimal choice, although consideration could be given to supplementing with tools such as SpliceWiz.Conclusion The experimental results demonstrate that, in comparison to the default software parameter configurations, the analysis combination results after tuning can provide more accurate biological insights. It is beneficial to carefully select suitable analysis software based on the data, rather than indiscriminately choosing tools, in order to achieve high-quality analysis results more efficiently.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] Differential expression analysis for paired RNA-seq data
    Chung, Lisa M.
    Ferguson, John P.
    Zheng, Wei
    Qian, Feng
    Bruno, Vincent
    Montgomery, Ruth R.
    Zhao, Hongyu
    BMC BIOINFORMATICS, 2013, 14 : 110
  • [42] Computational analysis of alternative polyadenylation from standard RNA-seq and single-cell RNA-seq data
    Gao, Yipeng
    Li, Wei
    MRNA 3' END PROCESSING AND METABOLISM, 2021, 655 : 225 - 243
  • [43] Multivariate approach to the analysis of correlated RNA-seq data
    Park, Hyunjin
    Lee, Seungyeoun
    Kim, Ye Jin
    Choi, Myung-Sook
    Park, Taesung
    2016 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2016, : 1783 - 1786
  • [44] PUseqClust: A Clustering Analysis Method for RNA-Seq Data
    Shi X.-F.
    Liu X.-J.
    Zhang L.
    Ruan Jian Xue Bao/Journal of Software, 2019, 30 (09): : 2857 - 2868
  • [45] Intron Retention as a Mode for RNA-Seq Data Analysis
    Zheng, Jian-Tao
    Lin, Cui-Xiang
    Fang, Zhao-Yu
    Li, Hong-Dong
    FRONTIERS IN GENETICS, 2020, 11
  • [46] Getting the most out of RNA-seq data analysis
    Khang, Tsung Fei
    Lau, Ching Yee
    PEERJ, 2015, 3
  • [47] De novo assembly and analysis of RNA-seq data
    Robertson, Gordon
    Schein, Jacqueline
    Chiu, Readman
    Corbett, Richard
    Field, Matthew
    Jackman, Shaun D.
    Mungall, Karen
    Lee, Sam
    Okada, Hisanaga Mark
    Qian, Jenny Q.
    Griffith, Malachi
    Raymond, Anthony
    Thiessen, Nina
    Cezard, Timothee
    Butterfield, Yaron S.
    Newsome, Richard
    Chan, Simon K.
    She, Rong
    Varhol, Richard
    Kamoh, Baljit
    Prabhu, Anna-Liisa
    Tam, Angela
    Zhao, YongJun
    Moore, Richard A.
    Hirst, Martin
    Marra, Marco A.
    Jones, Steven J. M.
    Hoodless, Pamela A.
    Birol, Inanc
    NATURE METHODS, 2010, 7 (11) : 909 - U62
  • [48] A survey of best practices for RNA-seq data analysis
    Conesa, Ana
    Madrigal, Pedro
    Tarazona, Sonia
    Gomez-Cabrero, David
    Cervera, Alejandra
    McPherson, Andrew
    Szczesniak, Michal Wojciech
    Gaffney, Daniel J.
    Elo, Laura L.
    Zhang, Xuegong
    Mortazavi, Ali
    GENOME BIOLOGY, 2016, 17
  • [49] De novo assembly and analysis of RNA-seq data
    Gordon Robertson
    Jacqueline Schein
    Readman Chiu
    Richard Corbett
    Matthew Field
    Shaun D Jackman
    Karen Mungall
    Sam Lee
    Hisanaga Mark Okada
    Jenny Q Qian
    Malachi Griffith
    Anthony Raymond
    Nina Thiessen
    Timothee Cezard
    Yaron S Butterfield
    Richard Newsome
    Simon K Chan
    Rong She
    Richard Varhol
    Baljit Kamoh
    Anna-Liisa Prabhu
    Angela Tam
    YongJun Zhao
    Richard A Moore
    Martin Hirst
    Marco A Marra
    Steven J M Jones
    Pamela A Hoodless
    Inanc Birol
    Nature Methods, 2010, 7 : 909 - 912
  • [50] The Impact of Normalization Methods on RNA-Seq Data Analysis
    Zyprych-Walczak, J.
    Szabelska, A.
    Handschuh, L.
    Gorczak, K.
    Klamecka, K.
    Figlerowicz, M.
    Siatkowski, I.
    BIOMED RESEARCH INTERNATIONAL, 2015, 2015