Model-driven development of interoperable communication interfaces for FAIR sensor services

被引:0
作者
Bodenbenner M. [1 ]
Montavon B. [1 ]
Schmitt R.H. [1 ,2 ]
机构
[1] Laboratory for Machine Tools and Production Engineering (WZL) RWTH Aachen University, Campus-Boulevard 30, Aachen
[2] Fraunhofer Institute for Production Technology IPT, Steinbachstraße 19, Aachen
来源
Measurement: Sensors | 2022年 / 24卷
关键词
FAIR data; internet of production; Model-based software engineering; Sensor data;
D O I
10.1016/j.measen.2022.100442
中图分类号
学科分类号
摘要
To gain long-term knowledge on product and process quality the sustainable collection, processing and storage of sensor data is an essential requirement. Whereas the application of the FAIR principles as a guideline to provide all collected data with rich metadata that allow for finding, accessing, interoperating with and reusing the data effectively is constantly growing within science and research, the usage in an industrial scenario is largely unexplored. Today, collected industrial data is often stored in arbitrary data formats without appropriate metadata describing the data content and is therefore lost for future reuse because crucial information on how to find, access and interoperate with the data is missing. Moreover, insufficiently described or missing data can lead to wrong decisions. In order to implement the FAIR principles for industrial sensor data, this article derives the major deficits and challenges of making industrial sensor data FAIR. Furthermore, the authors propose a three-layer architecture of FAIR sensor services, which handles the discussed challenges, to acquire FAIR sensor data at the time of measurement. The conceptual draft is evaluated by a prototypical implementation of a FAIR sensor service. © 2022 The Author(s)
引用
收藏
相关论文
共 31 条
[1]  
Reis M., Gins G., Industrial process monitoring in the big data/industry 4.0 era: from detection, to diagnosis, to prognosis, Processes, 5, 4, (2017)
[2]  
Pennekamp J., Glebke R., Henze M., Meisen T., Quix C., Hai R., Gleim L., Niemietz P., Rudack M., Knape S., Epple A., Trauth D., Vroomen U., Bergs T., Brecher C., Buhrig-Polaczek A., Jarke M., Wehrle K., Towards an infrastructure enabling the internet of production, 2019 IEEE International Conference on Industrial Cyber Physical Systems (ICPS), IEEE, pp. 31-37, (2019)
[3]  
Jeschke S., Brecher C., Song H., Rawat D.B., Industrial Internet of Things: Cybermanufacturing Systems, Softcover Reprint of the Original 1st Edition 2017 Edition, Springer Series in Wireless Technology, (2018)
[4]  
Sisinni E., Saifullah A., Han S., Jennehag U., Gidlund M., Industrial internet of things: challenges, opportunities, and directions, IEEE Trans. Ind. Inf., 14, 11, pp. 4724-4734, (2018)
[5]  
Tanhua T., Pouliquen S., Hausman J., O'Brien K., Bricher P., de Bruin T., Buck J.J.H., Burger E.F., Carval T., Casey K.S., Diggs S., Giorgetti A., Glaves H., Harscoat V., Kinkade D., Muelbert J.H., Novellino A., Pfeil B., Pulsifer P.L., van de Putte A., Robinson E., Schaap D., Smirnov A., Smith N., Snowden D., Spears T., Stall S., Tacoma M., Thijsse P., Tronstad S., Vandenberghe T., Wengren M., Wyborn L., Zhao Z., Ocean fair data services, Front. Mar. Sci., 6, (2019)
[6]  
Wilkinson M.D., Dumontier M., Aalbersberg I.J.J., Appleton G., Axton M., Baak A., Blomberg N., Boiten J.-W., da Silva Santos L.B., Bourne P.E., Bouwman J., Brookes A.J., Clark T., Crosas M., Dillo I., Dumon O., Edmunds S., Evelo C.T., Finkers R., Gonzalez-Beltran A., Gray A.J.G., Groth P., Goble C., Grethe J.S., Heringa J., 't Hoen P.A.C., Hooft R., Kuhn T., Kok R., Kok J., Lusher S.J., Martone M.E., Mons A., Packer A.L., Persson B., Rocca-Serra P., Roos M., van Schaik R., Sansone S.-A., Schult
[7]  
Rychlik M., Zappa G., Anorga L., Belc N., Castanheira I., Donard O.F.X., Kourimska L., Ogrinc N., Ocke M.C., Presser K., Zoani C., Ensuring food integrity by metrology and fair data principles, Front. Chem., 6, (2018)
[8]  
van Reisen M., Stokmans M., Basajja M., Ong'ayo A.O., Kirkpatrick C., Mons B., Towards the tipping point for fair implementation: data intelligence, 2(1-2), 264-275, Data Intelligence, 2, 1-2, pp. 264-275, (2020)
[9]  
Barnstedt E., Bedenbender H., Billmann M., Boss B., Clauer E., Fritsche M., Garrels K., Hankel M., Hillermeier O., Hoffmeister M., Jochem M., Koziolek H., Legat C., Mendes M., Neidig J., Sauer M.
[10]  
Gleim L., Tirpitz L., Decker S.