Enhancing shear strength predictions of rocks using a hierarchical ensemble model

被引:10
作者
Ding, Xiaohua [1 ,2 ]
Amiri, Maryam [3 ]
Hasanipanah, Mahdi [4 ,5 ]
机构
[1] China Univ Min & Technol, Sch Mines, Xuzhou 221116, Peoples R China
[2] China Univ Min & Technol, State Key Lab Coal Resources & Safe Min, Xuzhou 221116, Peoples R China
[3] Arak Univ, Dept Comp Engn, Fac Engn, Arak 3815688349, Iran
[4] Duy Tan Univ, Inst Res & Dev, Da Nang, Vietnam
[5] Duy Tan Univ, Sch Engn & Technol, Da Nang, Vietnam
基金
中国国家自然科学基金;
关键词
Shear strength parameters; Hierarchical ensemble model; Prediction models; Machine learning; CLASSIFICATION; PERFORMANCE; PARAMETERS; TOOLS;
D O I
10.1038/s41598-024-71367-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Shear strength (SS) parameters are essential for understanding the mechanical behavior of materials, particularly in geotechnical engineering and rock mechanics. This study proposes a novel hierarchical ensemble model (HEM) to predict SS parameters: cohesion (C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C$$\end{document}) and angle of internal friction (phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi$$\end{document}). The HEM addresses the limitations of traditional machine learning models. Its performance was validated using leave-one-out cross-validation (LOOCV) and out-of-bag (OOB) evaluation methods. The model's accuracy was assessed with R-squared correlation (R2), absolute average relative error percentage (AAREP), Taylor diagrams, and quantile-quantile plots. The computational results demonstrated that the proposed HEM outperforms previous studies using the same database. The model predicted phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi$$\end{document} and C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C$$\end{document} with R2 values of 0.93 and 0.979, respectively. The AAREP values were 1.96% for phi and 4.7% for C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C$$\end{document}. These results indicate that the HEM significantly improves the prediction quality of phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi$$\end{document} and C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C$$\end{document}, and exhibits strong generalization capability. Sensitivity analysis revealed that sigma_3max sigma 3max (maximum principal stress) had the greatest impact on modeling both phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi$$\end{document} and C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C$$\end{document}. According to uncertainty analysis, the LOOCV and OOB had the widest uncertainty bands for the phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi$$\end{document} and C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C$$\end{document} parameters, respectively.
引用
收藏
页数:14
相关论文
共 51 条
[1]  
Amiri M., 2022, J. Comput. Secur., V9, P1
[2]   A new efficient approach for extracting the closed episodes for workload prediction in cloud [J].
Amiri, Maryam ;
Mohammad-Khanli, Leyli ;
Mirandola, Raffaela .
COMPUTING, 2020, 102 (01) :141-200
[3]  
Angra S, 2017, PROCEEDINGS OF THE 2017 INTERNATIONAL CONFERENCE ON BIG DATA ANALYTICS AND COMPUTATIONAL INTELLIGENCE (ICBDAC), P57, DOI 10.1109/ICBDACI.2017.8070809
[4]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[5]   State-of-the-art on the anchorage performance of rock bolts subjected to shear load [J].
Chen, Yu ;
Xiao, Haodong .
INTERNATIONAL JOURNAL OF COAL SCIENCE & TECHNOLOGY, 2024, 11 (01)
[6]   Comparing the performance of machine learning methods in estimating the shear wave transit time in one of the reservoirs in southwest of Iran [J].
Dehghani, MohammadRasool ;
Jahani, Shahryar ;
Ranjbar, Ali .
SCIENTIFIC REPORTS, 2024, 14 (01)
[7]  
Efron B., 1982, The jackknife, the bootstrap and other resampling plans
[8]   Feature Selection Using Neighborhood based Entropy [J].
Farnaghi-Zadeh, Fatemeh ;
Rahmani, Mohsen ;
Amiri, Maryam .
JOURNAL OF UNIVERSAL COMPUTER SCIENCE, 2022, 28 (11) :1169-1192
[9]   Predicting the shear strength parameters of rock: A comprehensive intelligent approach [J].
Fattahi, Hadi ;
Hasanipanah, Mahdi .
GEOMECHANICS AND ENGINEERING, 2021, 27 (05) :511-525
[10]  
Fernández-Delgado M, 2014, J MACH LEARN RES, V15, P3133