Genomic-inferred cross-selection methods for multi-trait improvement in a recurrent selection breeding program

被引:0
作者
Atanda, Sikiru Adeniyi [1 ]
Bandillo, Nonoy [2 ]
机构
[1] North Dakota State Univ, Agr Data Analyt Unit, Fargo, ND 58105 USA
[2] North Dakota State Univ, Dept Plant Sci, Fargo, ND 58108 USA
基金
美国食品与农业研究所;
关键词
Selection index; Usefulness criterion; Genomic prediction; Genomic estimated breeding value; Optimal haploid value; Genetic gain; Genetic drift; Stochastic simulation; Quantitative trait nucleotide; Breeding cycle; GENETIC VARIANCE; PREDICTION; POPULATION; SIMULATION; VALUES; YIELD; GAIN; LOCI;
D O I
10.1186/s13007-024-01258-4
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The major drawback to the implementation of genomic selection in a breeding program lies in long-term decrease in additive genetic variance, which is a trade-off for rapid genetic improvement in short term. Balancing increase in genetic gain with retention of additive genetic variance necessitates careful optimization of this trade-off. In this study, we proposed an integrated index selection approach within the genomic inferred cross-selection (GCS) framework to maximize genetic gain across multiple traits. With this method, we identified optimal crosses that simultaneously maximize progeny performance and maintain genetic variance for multiple traits. Using a stochastic simulated recurrent breeding program over a 40-years period, we evaluated different GCS methods along with other factors, such as the number of parents, crosses, and progeny per cross, that influence genetic gain in a pulse crop breeding program. Across all breeding scenarios, the posterior mean variance consistently enhances genetic gain when compared to other methods, such as the usefulness criterion, optimal haploid value, mean genomic estimated breeding value, and mean index selection value of the superior parents. In addition, we provide a detailed strategy to optimize the number of parents, crosses, and progeny per cross that can potentially maximize short- and long-term genetic gain in a public breeding program.
引用
收藏
页数:13
相关论文
共 59 条
[21]   AlphaSimR: an R package for breeding program simulations [J].
Gaynor, R. Chris ;
Gorjanc, Gregor ;
Hickey, John M. .
G3-GENES GENOMES GENETICS, 2021, 11 (02)
[22]   A Two-Part Strategy for Using Genomic Selection to Develop Inbred Lines [J].
Gaynor, R. Chris ;
Gorjanc, Gregor ;
Bentley, Alison R. ;
Ober, Eric S. ;
Howell, Phil ;
Jackson, Robert ;
Mackay, Ian J. ;
Hickey, John M. .
CROP SCIENCE, 2017, 57 (05) :2372-2386
[23]   Optimal cross selection for long-term genetic gain in two-part programs with rapid recurrent genomic selection [J].
Gorjanc, Gregor ;
Gaynor, R. Chris ;
Hickey, John M. .
THEORETICAL AND APPLIED GENETICS, 2018, 131 (09) :1953-1966
[24]  
Haldane JBS, 1919, J GENET, V8, P299
[25]   The Predicted Cross Value for Genetic Introgression of Multiple Alleles [J].
Han, Ye ;
Cameron, John N. ;
Wang, Lizhi ;
Beavis, William D. .
GENETICS, 2017, 205 (04) :1409-1423
[26]   The efficiency of three methods of selection [J].
Hazel, LN ;
Lush, JL .
JOURNAL OF HEREDITY, 1942, 33 (11) :393-399
[27]   Dynamics of long-term genomic selection [J].
Jannink, Jean-Luc .
GENETICS SELECTION EVOLUTION, 2010, 42
[28]   The statistical theory of linear selection indices from phenotypic to genomic selection [J].
Jesus Ceron-Rojas, J. ;
Crossa, Jose .
CROP SCIENCE, 2022, 62 (02) :537-563
[29]   A reference genome for pea provides insight into legume genome evolution [J].
Kreplak, Jonathan ;
Madoui, Mohammed-Amin ;
Capal, Petr ;
Novak, Petr ;
Labadie, Karine ;
Aubert, Gregoire ;
Bayer, Philipp E. ;
Gali, Krishna K. ;
Syme, Robert A. ;
Main, Dorrie ;
Klein, Anthony ;
Berard, Aurelie ;
Vrbova, Iva ;
Fournier, Cyril ;
d'Agata, Leo ;
Belser, Caroline ;
Berrabah, Wahiba ;
Toegelova, Helena ;
Milec, Zbynek ;
Vrana, Jan ;
Lee, HueyTyng ;
Kougbeadjo, Ayite ;
Terezol, Morgane ;
Huneau, Cecile ;
Turo, Chala J. ;
Mohellibi, Nacer ;
Neumann, Pavel ;
Falque, Matthieu ;
Gallardo, Karine ;
McGee, Rebecca ;
Tar'an, Bunyamin ;
Bendahmane, Abdelhafid ;
Aury, Jean-Marc ;
Batley, Jacqueline ;
Le Paslier, Marie-Christine ;
Ellis, Noel ;
Warkentin, Thomas D. ;
Coyne, Clarice J. ;
Salse, Jerome ;
Edwards, David ;
Lichtenzveig, Judith ;
Macas, Jiri ;
Dolezel, Jaroslav ;
Wincker, Patrick ;
Burstin, Judith .
NATURE GENETICS, 2019, 51 (09) :1411-+
[30]   Using information of relatives in genomic prediction to apply effective stratified medicine [J].
Lee, S. Hong ;
Weerasinghe, W. M. Shalanee P. ;
Wray, Naomi R. ;
Goddard, Michael E. ;
van der Werf, Julius H. J. .
SCIENTIFIC REPORTS, 2017, 7