Error estimates for finite element discretizations of the instationary Navier-Stokes equations

被引:0
作者
Vexler, Boris [1 ]
Wagner, Jakob [1 ]
机构
[1] Tech Univ Munich, Chair Optimal Control, Sch Computat Informat & Technol, Dept Math, Boltzmannstr 3, D-85748 Garching bei Munich, Germany
关键词
Navier-Stokes; transient instationary; finite elements; discontinuous Galerkin; error estimates; best approximation; fully discrete; APPROXIMATION; STABILITY; INEQUALITIES; REGULARITY;
D O I
10.1051/m2an/2024006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we consider the two dimensional instationary Navier-Stokes equations with homogeneous Dirichlet/no-slip boundary conditions. We show error estimates for the fully discrete problem, where a discontinuous Galerkin method in time and inf-sup stable finite elements in space are used. Recently, best approximation type error estimates for the Stokes problem in the L infinity(I; L2(omega)), L2(I; H1(omega)) and L2(I; L2(omega)) norms have been shown. The main result of the present work extends the error estimate in the L infinity(I; L2(omega)) norm to the Navier-Stokes equations, by pursuing an error splitting approach and an appropriate duality argument. In order to discuss the stability of solutions to the discrete primal and dual equations, a specially tailored discrete Gronwall lemma is presented. The techniques developed towards showing the L infinity(I; L2(omega)) error estimate, also allow us to show best approximation type error estimates in the L2(I; H1(omega)) and L2(I; L2(omega)) norms, which complement this work.
引用
收藏
页码:457 / 488
页数:32
相关论文
共 50 条
  • [41] Error Estimates of Mixed Finite Element Methods for Time-Fractional Navier–Stokes Equations
    Xiaocui Li
    Xiaoyuan Yang
    Yinghan Zhang
    Journal of Scientific Computing, 2017, 70 : 500 - 515
  • [42] THE POSTPROCESSED MIXED FINITE-ELEMENT METHOD FOR THE NAVIER-STOKES EQUATIONS: REFINED ERROR BOUNDS
    de Frutos, Javier
    Garcia-Archilla, Bosco
    Novo, Julia
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 46 (01) : 201 - 230
  • [43] Unconditional stability and error estimates of the modified characteristics FEMs for the Micropolar Navier-Stokes Equations
    Si, Zhiyong
    Ji, Yao
    Wang, Yunxia
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2024, 134
  • [44] The stabilized extrapolated trapezoidal finite-element method for the Navier-Stokes equations
    Labovsky, Alexandr
    Layton, William J.
    Manica, Carolina C.
    Neda, Monika
    Rebholz, Leo G.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2009, 198 (9-12) : 958 - 974
  • [45] A POSTERIORI ERROR ESTIMATES FOR A DISTRIBUTED OPTIMAL CONTROL PROBLEM OF THE STATIONARY NAVIER-STOKES EQUATIONS
    Allendes, Alejandro
    Fuica, Francisco
    Otarola, Enrique
    Quero, Daniel
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2021, 59 (04) : 2898 - 2923
  • [46] AUTOMATIC INSERTION OF A TURBULENCE MODEL IN THE FINITE ELEMENT DISCRETIZATION OF THE NAVIER-STOKES EQUATIONS
    Bernardi, Christine
    Chacon Rebollo, Tomas
    Hecht, Frederic
    Lewandowski, Roger
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2009, 19 (07) : 1139 - 1183
  • [47] Convergence of three iterative methods based on the finite element discretization for the stationary Navier-Stokes equations
    He, Yinnian
    Li, Jian
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2009, 198 (15-16) : 1351 - 1359
  • [48] Least squares preconditioners for stabilized discretizations of the Navier-Stokes equations
    Elman, Howard
    Howle, Victoria E.
    Shadid, John
    Silvester, David
    Tuminaro, Ray
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2007, 30 (01) : 290 - 311
  • [49] A PRIORI ERROR ESTIMATES FOR FINITE ELEMENT DISCRETIZATIONS OF A SHAPE OPTIMIZATION PROBLEM
    Kiniger, Bernhard
    Vexler, Boris
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2013, 47 (06): : 1733 - 1763
  • [50] RATES OF CONVERGENCE FOR DISCRETIZATIONS OF THE STOCHASTIC INCOMPRESSIBLE NAVIER-STOKES EQUATIONS
    Carelli, Erich
    Prohl, Andreas
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2012, 50 (05) : 2467 - 2496