Shadow Detection via Predicting the Confidence Maps of Shadow Detection Methods

被引:8
作者
Liao, Jingwei [1 ]
Liu, Yanli [1 ]
Xing, Guanyu [2 ]
Wei, Housheng [2 ]
Chen, Jueyu [1 ]
Xu, Songhua [3 ]
机构
[1] Sichuan Univ, Coll Comp Sci, Chengdu, Peoples R China
[2] Sichuan Univ, Natl Key Lab Fundamental Sci Synthet Vis, Chengdu, Peoples R China
[3] Univ South Carolina, Coll Engn & Comp, Columbia, SC 29208 USA
来源
PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021 | 2021年
基金
中国国家自然科学基金;
关键词
Shadow detection; confidence map; ensemble learning;
D O I
10.1145/3474085.3475235
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Today's mainstream shadow detection methods are manually designed via a case-by-case approach. Accordingly, these methods may only be able to detect shadows for specific scenes. Given the complex and diverse shadow scenes in reality, none of the existing methods can provide a one-size-fits-all solution with satisfactory performance. To address this problem, this paper introduces a new concept, named shadow detection confidence, which can be used to evaluate the effect of any shadow detection method for any given scene. The best detection effect for a scene is achieved by combining prediction results by multiple methods. To measure the shadow detection confidence characteristics of an image, a novel relative confidence map prediction network (RCMPNet) is proposed. Experimental results show that the proposed method outperforms multiple state-of-the-art shadow detection methods on four shadow detection benchmark datasets.
引用
收藏
页码:704 / 712
页数:9
相关论文
共 45 条
  • [1] Breiman L, 1996, MACH LEARN, V24, P123, DOI 10.1007/BF00058655
  • [2] Cermelli Fabio, 2020, Computer Vision and Pattern Recognition (CVPR)
  • [3] A Multi-task Mean Teacher for Semi-supervised Shadow Detection
    Chen, Zhihao
    Zhu, Lei
    Wan, Liang
    Wang, Song
    Feng, Wei
    Heng, Pheng-Ann
    [J]. 2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 5610 - 5619
  • [4] ARGAN: Attentive Recurrent Generative Adversarial Network for Shadow Detection and Removal
    Ding, Bin
    Long, Chengjiang
    Zhang, Ling
    Xiao, Chunxia
    [J]. 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 10212 - 10221
  • [5] El-Zahhar M. M., 2011, 2011 IEEE International Conference on Signal and Image Processing Applications (ICSIPA 2011), P348, DOI 10.1109/ICSIPA.2011.6144084
  • [6] Paired Regions for Shadow Detection and Removal
    Guo, Ruiqi
    Dai, Qieyun
    Hoiem, Derek
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (12) : 2956 - 2967
  • [7] Guzman -Rivera A., 2012, Advances in Neural Information Processing Systems, V1, P3
  • [8] Hosseinzadeh S, 2018, IEEE INT C INT ROBOT, P3124, DOI 10.1109/IROS.2018.8594050
  • [9] Hu J, 2018, PROC CVPR IEEE, P7132, DOI [10.1109/TPAMI.2019.2913372, 10.1109/CVPR.2018.00745]
  • [10] Hu XW, 2021, Arxiv, DOI arXiv:1911.06998