Fractal Schrödinger equation: implications for fractal sets

被引:2
作者
Golmankhaneh, Alireza Khalili [1 ]
Pellis, Stergios [2 ]
Zingales, Massimiliano [3 ]
机构
[1] Islamic Azad Univ, Dept Phys, Urmia Branch, Orumiyeh 63896, Iran
[2] Univ Ioannina, Dept Phys, Ioannina, Greece
[3] Univ Palermo, Dipartimento Ingn, Viale Sci Ed 8, I-90128 Palermo, Italy
关键词
fractal calculus; fractal Schr & ouml; dinger equation; fractal hydrogen atom; fractal simple harmonic motion; SCHRODINGER-EQUATION; SPACE-TIME; REAL LINE; CALCULUS; SUBSETS;
D O I
10.1088/1751-8121/ad3e46
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper delves into the world of fractal calculus, investigating its implications for fractal sets. It introduces the Fractal Schr & ouml;dinger equation and provides insights into its consequences. The study presents a general solution for the time-dependent Schr & ouml;dinger equation, unveiling its core aspects. Exploring quantum mechanics in the context of fractals, the paper analyzes the probability density of the radial hydrogen atom, unveiling its behavior within fractal dimensions. The investigation extends to deciphering the intricate energy levels of the hydrogen atom, uncovering the interplay of quantum mechanics and fractal geometry. Innovatively, the research applies the Fractal Schr & ouml;dinger equation to simple harmonic motion, leading to the introduction of the fractal probability density function for the harmonic oscillator. The paper employs a series of illustrative figures that enhance the comprehension of the findings. By intertwining quantum mechanics and fractal mathematics, this research paves the way for deeper insights into their relationship.
引用
收藏
页数:19
相关论文
共 56 条
[11]   Numerical analysis on the Sierpinski gasket, with applications to Schrodinger equations, wave equation, and Gibbs' phenomenon [J].
Coletta, K ;
Dias, K ;
Strichartz, RS .
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2004, 12 (04) :413-449
[12]   The fractional Schrodinger equation for delta potentials [J].
de Oliveira, Edmundo Capelas ;
Costa, Felix Silva ;
Vaz, Jayme, Jr. .
JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (12)
[13]   SOLUTIONS TO THE SCHRODINGER-EQUATION ON SOME FRACTAL LATTICES [J].
DOMANY, E ;
ALEXANDER, S ;
BENSIMON, D ;
KADANOFF, LP .
PHYSICAL REVIEW B, 1983, 28 (06) :3110-3123
[14]   Space-time fractional Schrodinger equation with time-independent potentials [J].
Dong, Jianping ;
Xu, Mingyu .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 344 (02) :1005-1017
[15]  
Edgar G.A., 1998, Integral, Probability, and Fractal Measures
[16]  
Falconer K., 2004, Fractal Geometry: Mathematical Foundations and Applications
[17]   Harmonic Oscillators on Infinite Sierpinski Gaskets [J].
Fan, Edward ;
Khandker, Zuhair ;
Strichartz, Robert S. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 287 (01) :351-382
[18]   Harmonic calculus on fractals -: A measure geometric approach I [J].
Freiberg, U ;
Zähle, M .
POTENTIAL ANALYSIS, 2002, 16 (03) :265-277
[19]   FRACTAL CALCULUS ON [0,1] [J].
GIONA, M .
CHAOS SOLITONS & FRACTALS, 1995, 5 (06) :987-1000
[20]  
Golmankhaneh A.K., 2022, Fractal Calculus and its Applications, DOI DOI 10.1142/12988