Entropy and de Haas-van Alphen oscillations of a three-dimensional marginal Fermi liquid

被引:4
作者
Nosov, P. A. [1 ,2 ]
Wu, Yi-Ming [1 ]
Raghu, S. [1 ,3 ]
机构
[1] Stanford Univ, Stanford Inst Theoret Phys, Stanford, CA 94305 USA
[2] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA
[3] Stanford Inst Mat & Energy Sci, SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA
基金
美国国家科学基金会;
关键词
QUANTUM OSCILLATIONS; COMPOSITE FERMIONS; MAGNETIC-FIELD; ELECTRONS; METALS; STATE;
D O I
10.1103/PhysRevB.109.075107
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study de Haas-van Alphen oscillations in a marginal Fermi liquid resulting from a three-dimensional metal tuned to a quantum-critical point (QCP). We show that the conventional approach based on extensions of the Lifshitz-Kosevich formula for the oscillation amplitudes becomes inapplicable when the correlation length exceeds the cyclotron radius. This breakdown is due to (i) nonanalytic finite-temperature contributions to the fermion self-energy, (ii) an enhancement of the oscillatory part of the self-energy by quantum fluctuations, and (iii) nontrivial dynamical scaling laws associated with the quantum critical point. We properly incorporate these effects within the Luttinger-Ward-Eliashberg framework for the thermodynamic potential by treating the fermionic and bosonic contributions on equal footing. As a result, we obtain the modified expressions for the oscillations of entropy and magnetization that remain valid in the non-Fermi-liquid regime.
引用
收藏
页数:24
相关论文
共 49 条
[1]  
Abrikosov A., 1963, METHODS QUANTUM FIEL
[2]  
Abrikosov A.A., 1988, Fundamentals of the Theory of Metals
[3]   Interaction effects on magneto-oscillations in a two-dimensional electron gas - art. no. 045426 [J].
Adamov, Y ;
Gornyi, IV ;
Mirlin, AD .
PHYSICAL REVIEW B, 2006, 73 (04)
[4]   How non-Fermi liquids cure their infrared divergences [J].
Aguilera Damia, Jeremias ;
Solis, Mario ;
Torroba, Gonzalo .
PHYSICAL REVIEW B, 2020, 102 (04)
[5]   Two-Dimensional Non-Fermi-Liquid Metals: A Solvable Large-N Limit [J].
Aguilera Damia, Jeremias ;
Kachru, Shamit ;
Raghu, Srinivas ;
Torroba, Gonzalo .
PHYSICAL REVIEW LETTERS, 2019, 123 (09)
[6]   2-DIMENSIONAL ELECTRON LIQUID IN A WEAK MAGNETIC-FIELD [J].
ALEINER, IL ;
GLAZMAN, LI .
PHYSICAL REVIEW B, 1995, 52 (15) :11296-11312
[7]  
Barisic N, 2013, NAT PHYS, V9, P761, DOI [10.1038/NPHYS2792, 10.1038/nphys2792]
[8]  
BYCHKOV YA, 1962, SOV PHYS JETP-USSR, V14, P1132
[9]   PROPERTIES OF BOSON-EXCHANGE SUPERCONDUCTORS [J].
CARBOTTE, JP .
REVIEWS OF MODERN PHYSICS, 1990, 62 (04) :1027-1157
[10]   Eliashberg theory of phonon-mediated superconductivity - When it is valid and how it breaks down [J].
Chubukov, Andrey, V ;
Abanov, Artem ;
Esterlis, Ilya ;
Kivelson, Steven A. .
ANNALS OF PHYSICS, 2020, 417