Valuation Semantics for S4

被引:0
作者
Loparic, Andrea M. [1 ]
Mortari, Cezar A. [2 ]
机构
[1] Univ Sao Paulo, Sao Paulo, Brazil
[2] Univ Fed Santa Catarina, Florianopolis, Brazil
关键词
Modal logic; Valuation semantics;
D O I
10.1007/s11225-024-10100-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This expository paper presents an application, to the modal logic S4, of the valuation semantics technique proposed by Lopari & cacute; for the basic normal modal logic K. In previous works we presented a valuation semantics for the minimal temporal logic Kt and several other systems modal and temporal logic. How to deal with S4, however, was left as an open problem-although we arrived at a working definition of A1,& mldr;,An\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_1,\ldots ,A_n$$\end{document}-valuations, we were not able to prove an important lemma for correctness. In this paper we solve this, presenting valuations for S4.
引用
收藏
页码:379 / 396
页数:18
相关论文
共 46 条
[21]   Construction of an explicit basis for rules admissible in modal system S4 [J].
Rybakov, VV .
MATHEMATICAL LOGIC QUARTERLY, 2001, 47 (04) :441-446
[22]   S4 is topologically complete for (0,1): a short proof [J].
Mints, Grigori .
LOGIC JOURNAL OF THE IGPL, 2006, 14 (01) :63-71
[23]   Computational Complexity of Core Fragments of Modal Logics T, K4, and S4 [J].
Walega, Przemyslaw Andrzej .
LOGICS IN ARTIFICIAL INTELLIGENCE, JELIA 2019, 2019, 11468 :744-759
[24]   Cut elimination for S4 n and K4 n with the central agent axiom [J].
Andrikonis, J. .
LITHUANIAN MATHEMATICAL JOURNAL, 2009, 49 (02) :123-139
[25]   Decidability of Quantified Propositional Intuitionistic Logic and S4 on Trees of Height and Arity ≤ω [J].
Richard Zach .
Journal of Philosophical Logic, 2004, 33 :155-164
[26]   Decidability of quantified propositional intuitionistic logic and S4 on trees of height and arity ≤ω [J].
Zach, R .
JOURNAL OF PHILOSOPHICAL LOGIC, 2004, 33 (02) :155-164
[27]   A New Method to Obtain Termination in Backward Proof Search For Modal Logic S4 [J].
Pliuskevicius, Regimantas ;
Pliuskeviciene, Aida .
JOURNAL OF LOGIC AND COMPUTATION, 2010, 20 (01) :353-379
[28]   Multi-Agent Dialogues and Dialogue Sequents for Proof Search and Scheduling in Intuitionistic Logic and the Modal Logic S4 [J].
Sticht, Martin .
FUNDAMENTA INFORMATICAE, 2018, 161 (1-2) :191-218
[29]   Decision Analysis based on Kripke's semantics [J].
Boeva, V ;
Ekenberg, L .
2002 FIRST INTERNATIONAL IEEE SYMPOSIUM INTELLIGENT SYSTEMS, VOL 1, PROCEEDINGS, 2002, :154-159
[30]   C. I. Lewis's Intensional Semantics [J].
Mares, Edwin .
NOTRE DAME JOURNAL OF FORMAL LOGIC, 2023, 64 (03) :329-352