Improved optical performance in circular-grating distributed feedback nanoplasmonic lasers

被引:0
作者
Guo, Cheng [1 ,2 ]
Yang, Zhenyuan [1 ,2 ]
Peng, Wenxin [3 ]
Li, Songnong [3 ]
Liu, Ziang [1 ,2 ]
Liu, Zhuonan [1 ,2 ]
Yu, Peiquan [1 ,2 ]
Wan, Weihao [1 ,2 ]
Huang, Xiaoping [1 ,2 ]
机构
[1] Univ Elect Sci & Technol China, Sch Resources & Environm, Chengdu 61731, Peoples R China
[2] Univ Elect Sci & Technol China, Yangtze Delta Reg Inst Huzhou, Huzhou 313001, Peoples R China
[3] State Grid Chongqing Elect Power Res Inst, Chongqing 401120, Peoples R China
关键词
Nanoplasmonic laser; Circular-grating; Distributed feedback; Mode engineering; TRANSVERSE-MODE CHARACTERISTICS; QUANTUM-CASCADE LASERS; WAVE-GUIDE; DFB; GENERATION; RADIATION; GAIN;
D O I
10.1016/j.optcom.2024.130513
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Optical modes control has been driven from vertical cavity surface emitting lasers (VCSELs) applications with multi-mode operation such as optical fiber communication or optical sensing. Optical gain materials coupling with optical resonators provides an effective way to tuning the optical mode of VCSELs. In this paper, a kind of novel circular-grating distributed feedback (CGDFB) nanoplasmonic laser is designed by using a special semiconductor nanorods array VCSEL coupled optically with a second-order distributed feedback (DFB) circular grating. In the device, the mode field is cooperatively controlled by the confinement of surface plasmon around the nanorod cavity and the spatial tuning with the DFB circular grating. By optimizing the design on the device comprehensively, the CGDFB nanoplasmonic laser exhibits the optimum lasing performance with a singlelongitudinal mode peak at 511.2 nm with a side-mode suppression ratio of 45 dB. The 3 dB line-width is compressed to 1.98 p.m. at a driven current of four times of the threshold current of 124 mA. A six-fold rotational symmetric far-field mode corresponding to the third-order Laguerre Gaussian azimuth mode is produced by the DFB circular grating. This work paves a fundamental way for the mode engineering design of novel nanolaser in the technical applications of optical communication, sensing and integrated photonics.
引用
收藏
页数:9
相关论文
共 53 条
  • [1] Generation of single optical plasmons in metallic nanowires coupled to quantum dots
    Akimov, A. V.
    Mukherjee, A.
    Yu, C. L.
    Chang, D. E.
    Zibrov, A. S.
    Hemmer, P. R.
    Park, H.
    Lukin, M. D.
    [J]. NATURE, 2007, 450 (7168) : 402 - 406
  • [2] Biosensing with plasmonic nanosensors
    Anker, Jeffrey N.
    Hall, W. Paige
    Lyandres, Olga
    Shah, Nilam C.
    Zhao, Jing
    Van Duyne, Richard P.
    [J]. NATURE MATERIALS, 2008, 7 (06) : 442 - 453
  • [3] Ten years of spasers and plasmonic nanolasers
    Azzam, Shaimaa, I
    Kildishev, Alexander, V
    Ma, Ren-Min
    Ning, Cun-Zheng
    Oulton, Rupert
    Shalaev, Vladimir M.
    Stockman, Mark, I
    Xu, Jia-Lu
    Zhang, Xiang
    [J]. LIGHT-SCIENCE & APPLICATIONS, 2020, 9 (01)
  • [4] Coplanar Plasmonic Nanolasers Based on Edge-Coupled Hybrid Plasmonic Waveguides
    Bian, Yusheng
    Zheng, Zheng
    Liu, Ya
    Zhu, Jinsong
    Zhou, Tao
    [J]. IEEE PHOTONICS TECHNOLOGY LETTERS, 2011, 23 (13) : 884 - 886
  • [5] Channel plasmon subwavelength waveguide components including interferometers and ring resonators
    Bozhevolnyi, SI
    Volkov, VS
    Devaux, E
    Laluet, JY
    Ebbesen, TW
    [J]. NATURE, 2006, 440 (7083) : 508 - 511
  • [6] Chang Z., 2023, Photonics Nanostruct., V56
  • [7] DYNAMIC, POLARIZATION, AND TRANSVERSE-MODE CHARACTERISTICS OF VERTICAL CAVITY SURFACE EMITTING LASERS
    CHANGHASNAIN, CJ
    HARBISON, JP
    HASNAIN, G
    VONLEHMEN, AC
    FLOREZ, LT
    STOFFEL, NG
    [J]. IEEE JOURNAL OF QUANTUM ELECTRONICS, 1991, 27 (06) : 1402 - 1409
  • [8] TRANSVERSE-MODE CHARACTERISTICS OF VERTICAL CAVITY SURFACE-EMITTING LASERS
    CHANGHASNAIN, CJ
    ORENSTEIN, M
    VONLEHMEN, A
    FLOREZ, LT
    HARBISON, JP
    STOFFEL, NG
    [J]. APPLIED PHYSICS LETTERS, 1990, 57 (03) : 218 - 220
  • [9] Optofluidic circular grating distributed feedback dye laser
    Chen, Yan
    Li, Zhenyu
    Henry, M. David
    Scherer, Axel
    [J]. APPLIED PHYSICS LETTERS, 2009, 95 (03)
  • [10] Choquette K.D., 2021, 2021 27 INT SEM LAS, P1