COMPACTNESS OF INTEGRAL OPERATORS AND UNIFORM INTEGRABILITY ON MEASURE SPACES

被引:0
|
作者
Hansen, Wolfhard [1 ]
机构
[1] Univ Bielefeld, Fak Math, D-33501 Bielefeld, Germany
关键词
uniform integrability; compact operator; potential;
D O I
10.59277/RRMPA.2024.11.16
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (E, epsilon, mu) be a measure space and let epsilon(+), epsilon(b) denote the set of all measurable numerical functions on E which are positive, bounded respectively. Moreover, let G: E x E -> [0, infinity] be measurable. We show that the set of all q is an element of epsilon(+) for which {G(x, center dot)q: x is an element of E} is uniformly integrable coincides with the set of all q is an element of epsilon(+) for which the mapping f bar right arrow G(fq) := integral G(center dot, y)f(y)q(y) d mu(y) is a compact operator on the space epsilon(b) (equipped with the sup-norm) provided each of these two sets contains strictly positive functions.
引用
收藏
页码:11 / 16
页数:6
相关论文
共 50 条
  • [31] MAXIMAL ESTIMATE AND INTEGRAL OPERATORS IN BERGMAN SPACES WITH DOUBLING MEASURE
    Pang, Changbao
    Perala, Antti
    Wang, Maofa
    Guo, Xin
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 151 (07) : 2881 - 2894
  • [32] Continuity and compactness of singular integral operators
    B. G. Gabdulkhaev
    Russian Mathematics, 2009, 53 (8) : 1 - 7
  • [33] Compactness Criteria for Fractional Integral Operators
    Vakhtang Kokilashvili
    Mieczysław Mastyło
    Alexander Meskhi
    Fractional Calculus and Applied Analysis, 2019, 22 : 1269 - 1283
  • [34] COMPACTNESS OF CERTAIN INTEGRAL-OPERATORS
    GRAHAM, IG
    SLOAN, IH
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1979, 68 (02) : 580 - 594
  • [35] COMPACTNESS CRITERIA FOR FRACTIONAL INTEGRAL OPERATORS
    Kokilashvili, Vakhtang
    Mastylo, Mieczyslaw
    Meskhi, Alexander
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2019, 22 (05) : 1269 - 1283
  • [36] COMPACTNESS OF INTEGRAL OPERATORS ON BANACH LATTICES
    NAGEL, RJ
    SCHLOTTE.U
    MATHEMATISCHE ANNALEN, 1973, 202 (04) : 301 - 306
  • [37] Continuity and Compactness of Singular Integral Operators
    Gabdulkhaev, B. G.
    RUSSIAN MATHEMATICS, 2009, 53 (08) : 1 - 7
  • [38] INTEGRAL OPERATORS AND COMPACTNESS OF INDUCED REPRESENTATIONS
    BUSBY, RC
    SCHOCHET.I
    SMITH, HA
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 164 (NFEB) : 461 - &
  • [39] On the boundedness and compactness of a class of integral operators
    Prokhorov, DV
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2000, 61 : 617 - 628
  • [40] Boundedness and compactness of Hardy-type integral operators on Lorentz-type spaces
    Li, Hongliang
    Sun, Qinxiu
    Yu, Xiao
    FORUM MATHEMATICUM, 2018, 30 (04) : 997 - 1011