Interplay between gain and loss in arrays of nonlinear plasmonic nanoparticles: toward parametric downconversion and amplification

被引:2
作者
Shah, Syed A. [1 ]
Clark, Michael R. [1 ,2 ]
Zyss, Joseph [3 ,4 ]
Sukharev, Maxim [2 ,5 ]
Piryatinski, Andrei [1 ]
机构
[1] Ctr Nonlinear Studies CNLS, Theoret Div, Los Alamos Natl Lab, Los Alamos, NM 87545 USA
[2] Arizona State Univ, Dept Phys, Tempe, AZ 85287 USA
[3] Univ Paris Saclay, Ecole Normale Super Paris Saclay CNRS, LUMIN Lab, 4 Ave Sci, Gif Sur Yvette, France
[4] Univ Paris Saclay, Ecole Normale Super Paris Saclay CNRS, Inst Alembert, 4 Ave Sci, Gif Sur Yvette, France
[5] Arizona State Univ, Coll Integrat Sci & Arts, Mesa, AZ 85212 USA
关键词
GENERATION;
D O I
10.1364/OL.515621
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
With the help of a theoretical model and finite-difference time-domain (FDTD) simulations based on the hydrodynamic-Maxwell model, we examine the effect of differencefrequency generation (DFG) in an array of L-shaped metal nanoparticles (MNPs) characterized by intrinsic plasmonic nonlinearity. The outcomes of the calculations reveal the spectral interplay between gain and loss in the vicinity of the fundamental frequency of the localized surface plasmon resonances. Subsequently, we identify different array thicknesses and pumping regimes facilitating parametric amplification and spontaneous parametric downconversion. Our results suggest that the parametric amplification regime becomes feasible on a scale of hundreds of nanometers and spontaneous parametric downconversion on the scale of tens of nanometers, opening up new exciting opportunities for developing building blocks of photonic metasurfaces.
引用
收藏
页码:1680 / 1683
页数:4
相关论文
共 18 条
  • [1] Rational design of metallic nanocavities for resonantly enhanced four-wave mixing
    Almeida, Euclides
    Prior, Yehiam
    [J]. SCIENTIFIC REPORTS, 2015, 5
  • [2] Optical Second Harmonic Generation in Plasmonic Nanostructures: From Fundamental Principles to Advanced Applications
    Butet, Jeremy
    Brevet, Pierre-Francois
    Martin, Olivier J. F.
    [J]. ACS NANO, 2015, 9 (11) : 10545 - 10562
  • [3] Plasmonic Surface Lattice Resonances: Theory and Computation
    Cherqui, Charles
    Bourgeois, Marc R.
    Wang, Danqing
    Schatz, George C.
    [J]. ACCOUNTS OF CHEMICAL RESEARCH, 2019, 52 (09) : 2548 - 2558
  • [4] Colloquium:: Light scattering by particle and hole arrays
    de Abajo, F. J. Garcia
    [J]. REVIEWS OF MODERN PHYSICS, 2007, 79 (04) : 1267 - 1290
  • [5] Difference-frequency generation in plasmonic nanostructures: a parameter-free hydrodynamic description
    De Luca, Federico
    Ciraci, Cristian
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2019, 36 (08) : 1979 - 1986
  • [6] Using surface lattice resonances to engineer nonlinear optical processes in metal nanoparticle arrays
    Huttunen, Mikko J.
    Rasekh, Payman
    Boyd, Robert W.
    Dolgaleva, Ksenia
    [J]. PHYSICAL REVIEW A, 2018, 97 (05)
  • [7] Kauranen M, 2012, NAT PHOTONICS, V6, P737, DOI [10.1038/nphoton.2012.244, 10.1038/NPHOTON.2012.244]
  • [8] Steps toward the experimental realization of surface plasmon polariton enhanced spontaneous parametric down-conversion
    Loot, A.
    Sildos, I
    Kiisk, V
    Romann, T.
    Hizhnyakov, V
    [J]. OPTIK, 2018, 171 : 557 - 564
  • [9] Modeling of enhanced spontaneous parametric down-conversion in plasmonic and dielectric structures with realistic waves
    Loot, A.
    Hizhnyakov, V.
    [J]. JOURNAL OF OPTICS, 2018, 20 (05)
  • [10] Wavelength and Polarization Dependence of Second-Harmonic Responses from Gold Nanocrescent Arrays
    Maekawa, Hiroaki
    Drobnyh, Elena
    Lancaster, Cady A.
    Large, Nicolas
    Schatz, George C.
    Shumaker-Parry, Jennifer S.
    Sukharev, Maxim
    Ge, Nien-Hui
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2020, 124 (37) : 20424 - 20435