Entanglement in Interacting Majorana Chains and Transitions of von Neumann Algebras

被引:7
作者
Basteiro, Pablo [1 ,2 ]
Di Giulio, Giuseppe [1 ,2 ]
Erdmenger, Johanna [1 ,2 ]
Xian, Zhuo-Yu [1 ,2 ]
机构
[1] Julius Maximilians Univ Wurzburg, Inst Theoret Phys & Astrophys, Am Hubland, D-97074 Wurzburg, Germany
[2] Julius Maximilians Univ Wurzburg, Wurzburg Dresden Excellence Cluster ct qmat, Am Hubland, D-97074 Wurzburg, Germany
基金
中国国家自然科学基金;
关键词
RINGS; OPERATORS;
D O I
10.1103/PhysRevLett.132.161604
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider Majorana lattices with two-site interactions consisting of a general function of the fermion bilinear. The models are exactly solvable in the limit of a large number of on-site fermions. The four-site chain exhibits a quantum phase transition controlled by the hopping parameters and manifests itself in a discontinuous entanglement entropy, obtained by constraining the one-sided modular Hamiltonian. Inspired by recent work within the AdS/CFT correspondence, we identify transitions between types of von Neumann operator algebras throughout the phase diagram. We find transitions of the form II1 <-> III <-> I-infinity that reduce to II1 <-> I-infinity in the strongly interacting limit, where they connect nonfactorized and factorized ground states. Our results provide novel realizations of such transitions in a controlled many-body model.
引用
收藏
页数:7
相关论文
共 47 条
[11]   Local criticality, diffusion and chaos in generalized Sachdev-Ye-Kitaev models [J].
Gu, Yingfei ;
Qi, Xiao-Liang ;
Stanford, Douglas .
JOURNAL OF HIGH ENERGY PHYSICS, 2017, (05)
[12]   Gauge theory correlators from non-critical string theory [J].
Gubser, SS ;
Klebanov, IR ;
Polyakov, AM .
PHYSICS LETTERS B, 1998, 428 (1-2) :105-114
[13]  
Haag R., 1996, Local quantum physics. Fields, particles, algebras
[14]  
Haag R., 1967, COMMUN MATH PHYS, V5, P215, DOI [10.1007/BF01646342, DOI 10.1007/BF01646342]
[15]   Boundary theories of critical matchgate tensor networks [J].
Jahn, A. ;
Gluza, M. ;
Verhoeven, C. ;
Singh, S. ;
Eisert, J. .
JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (04)
[16]   Central charges of aperiodic holographic tensor-network models [J].
Jahn, Alexander ;
Zimboras, Zoltan ;
Eisert, Jens .
PHYSICAL REVIEW A, 2020, 102 (04)
[17]   Phase transition in von Neumann entropy from replica symmetry breaking [J].
Jian, Shao-Kai ;
Swingle, Brian .
JOURNAL OF HIGH ENERGY PHYSICS, 2023, 2023 (11)
[18]   Entanglement entropy in aperiodic singlet phases [J].
Juhasz, Robert ;
Zimboras, Zoltan .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2007,
[19]  
Kitaev A., 2015, KITP PROGRAM ENTANGL
[20]   Emergent times in holographic duality [J].
Leutheusser, Sam ;
Liu, Hong .
PHYSICAL REVIEW D, 2023, 108 (08)