On the genus and crosscap two coannihilator graph of commutative rings

被引:1
作者
Nazim, Mohd [1 ]
Mir, Shabir Ahmad [2 ]
Rehman, Nadeem Ur [2 ]
机构
[1] JSPM Univ, Fac Sci & Technol, Sch Basic & Appl Sci, Pune 412207, India
[2] Aligarh Muslim Univ, Dept Math, Aligarh 202002, India
关键词
Zero-divisor graph; Cozero-divisor graph; Coannihilator graph; Genus of a graph; Crosscap of a graph; DIVISOR GRAPH; CLASSIFICATION;
D O I
10.1007/s40314-024-02872-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Consider a commutative ring with unity denoted as R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {R}$$\end{document}, and let W(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W(\mathscr {R})$$\end{document} represent the set of non-unit elements in R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {R}$$\end{document}. The coannihilator graph of R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {R}$$\end{document}, denoted as AG '(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$AG'(\mathscr {R})$$\end{document}, is a graph defined on the vertex set W(R)& lowast;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W(\mathscr {R})<^>*$$\end{document}. This graph captures the relationships among non-unit elements. Specifically, two distinct vertices, x and y, are connected in AG '(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$AG'(\mathscr {R})$$\end{document} if and only if either x is not an element of xyR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x \notin xy\mathscr {R}$$\end{document} or y is not an element of xyR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$y \notin xy\mathscr {R}$$\end{document}, where wR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w\mathscr {R}$$\end{document} denotes the principal ideal generated by w is an element of R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w \in \mathscr {R}$$\end{document}. In the context of this paper, the primary objective is to systematically classify finite rings R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {R}$$\end{document} based on distinct characteristics of their coannihilator graph. The focus is particularly on cases where the coannihilator graph exhibits a genus or crosscap of two. Additionally, the research endeavors to provide a comprehensive characterization of finite rings R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {R}$$\end{document} for which the connihilator graph AG '(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$AG'(\mathscr {R})$$\end{document} attains an outerplanarity index of two.
引用
收藏
页数:11
相关论文
共 14 条
  • [1] Afkhami M, 2019, SOUTHEAST ASIAN BULL, V43, P1
  • [2] Afkhami M, 2011, SOUTHEAST ASIAN BULL, V35, P753
  • [3] Alanazi Abdulaziz M., 2021, J Math, V4384683, P7
  • [4] The zero-divisor graph of a commutative ring
    Anderson, DF
    Livingston, PS
    [J]. JOURNAL OF ALGEBRA, 1999, 217 (02) : 434 - 447
  • [5] Classification of rings with crosscap two class of graphs
    Asir, T.
    Mano, K.
    [J]. DISCRETE APPLIED MATHEMATICS, 2019, 265 : 13 - 21
  • [6] Atiyah M., 1969, INTRO COMMUTATIVE AL
  • [7] ON THE ANNIHILATOR GRAPH OF A COMMUTATIVE RING
    Badawi, Ayman
    [J]. COMMUNICATIONS IN ALGEBRA, 2014, 42 (01) : 108 - 121
  • [8] COLORING OF COMMUTATIVE RINGS
    BECK, I
    [J]. JOURNAL OF ALGEBRA, 1988, 116 (01) : 208 - 226
  • [9] Kammer F, 2007, LECT NOTES COMPUT SC, V4698, P359
  • [10] Kulli VR., 1975, Proc Indian Nat Sci Acad, V41, P275