A large-scale dataset for korean document-level relation extraction from encyclopedia texts

被引:0
|
作者
Son, Suhyune [1 ]
Lim, Jungwoo [1 ]
Koo, Seonmin [1 ]
Kim, Jinsung [1 ]
Kim, Younghoon [2 ]
Lim, Youngsik [2 ]
Hyun, Dongseok [2 ]
Lim, Heuiseok [1 ]
机构
[1] Korea Univ, Comp Sci & Engn, 1 5-ka,Anam Dong, Seoul 02841, South Korea
[2] NAVER, 5 Jeongjail ro,Buljeong ro, Seongnam 13561, South Korea
基金
新加坡国家研究基金会;
关键词
Natural Language Processing; Information Extraction; Document-level Relation Extraction; Korean Relation Extraction; ENTITY;
D O I
10.1007/s10489-024-05605-9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Document-level relation extraction (RE) aims to predict the relational facts between two given entities from a document. Unlike widespread research on document-level RE in English, Korean document-level RE research is still at the very beginning due to the absence of a dataset. To accelerate the studies, we present TREK (Toward Document-Level Relation Extraction in Korean) dataset constructed from Korean encyclopedia documents written by the domain experts. We provide detailed statistical analyses for our large-scale dataset and human evaluation results suggest the assured quality of TREK . Also, we introduce the document-level RE model that considers the named entity-type while considering the Korean language's properties. In the experiments, we demonstrate that our proposed model outperforms the baselines and conduct qualitative analysis.
引用
收藏
页码:8681 / 8701
页数:21
相关论文
共 50 条
  • [1] Exploiting Ubiquitous Mentions for Document-Level Relation Extraction
    Zhang, Ruoyu
    Li, Yanzeng
    Zhang, Minhao
    Zou, Lei
    PROCEEDINGS OF THE 46TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, SIGIR 2023, 2023, : 1986 - 1990
  • [2] Document-level relation extraction with hierarchical dependency tree and bridge path
    Wan, Qian
    Du, Shangheng
    Liu, Yaqi
    Fang, Jing
    Wei, Luona
    Liu, Sannyuya
    KNOWLEDGE-BASED SYSTEMS, 2023, 278
  • [3] Document-Level Relation Extraction with Path Reasoning
    Xu, Wang
    Chen, Kehai
    Zhao, Tiejun
    ACM TRANSACTIONS ON ASIAN AND LOW-RESOURCE LANGUAGE INFORMATION PROCESSING, 2023, 22 (04)
  • [4] Collective prompt tuning with relation inference for document-level relation extraction
    Yuan, Changsen
    Cao, Yixin
    Huang, Heyan
    INFORMATION PROCESSING & MANAGEMENT, 2023, 60 (05)
  • [5] Document-level relation extraction with three channels
    Zhang, Zhanjun
    Zhao, Shan
    Zhang, Haoyu
    Wan, Qian
    Liu, Jie
    KNOWLEDGE-BASED SYSTEMS, 2024, 284
  • [6] DoreBer: Document-Level Relation Extraction Method Based on BernNet
    Yuan, Boya
    Xu, Liwen
    IEEE ACCESS, 2023, 11 : 136468 - 136477
  • [7] Document-Level Relation Extraction with Local Relation and Global Inference
    Liu, Yiming
    Shan, Hongtao
    Nie, Feng
    Zhang, Gaoyu
    Yuan, George Xianzhi
    INFORMATION, 2023, 14 (07)
  • [8] Evidence and Axial Attention Guided Document-level Relation Extraction
    Yuan, Jiawei
    Leng, Hongyong
    Qian, Yurong
    Chen, Jiaying
    Ma, Mengnan
    Hou, Shuxiang
    COMPUTER SPEECH AND LANGUAGE, 2025, 90
  • [9] CDER: Collaborative Evidence Retrieval for Document-Level Relation Extraction
    Khai Phan Tran
    Li, Xue
    INTELLIGENT INFORMATION AND DATABASE SYSTEMS, PT I, ACIIDS 2024, 2024, 14795 : 28 - 39
  • [10] Evidence-aware Document-level Relation Extraction
    Xu, Tianyu
    Hua, Wen
    Qu, Jianfeng
    Li, Zhixu
    Xu, Jiajie
    Liu, An
    Zhao, Lei
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 2311 - 2320