Deep Learning Models for Aorta Segmentation in Computed Tomography Images: A Systematic Review And Meta-Analysis

被引:1
作者
Wang, Ting-Wei [1 ,2 ]
Tzeng, Yun-Hsuan [2 ,3 ]
Hong, Jia-Sheng [1 ]
Liu, Ho-Ren [3 ]
Wu, Kuan-Ting [1 ,2 ]
Fu, Hao-Neng [4 ]
Lee, Yung-Tsai [4 ]
Yin, Wei-Hsian [2 ,4 ]
Wu, Yu-Te [1 ,5 ,6 ]
机构
[1] Natl Yang Ming Chiao Tung Univ, Inst Biophoton, 155 Sec 2,Li Nong St, Taipei 112304, Taiwan
[2] Natl Yang Ming Chiao Tung Univ, Coll Med, Sch Med, Taipei, Taiwan
[3] Cheng Hsin Gen Hosp, Hlth Management Ctr, Div Med Imaging, Taipei, Taiwan
[4] Cheng Hsin Gen Hosp, Ctr Heart, Taipei, Taiwan
[5] Natl Yang Ming Chiao Tung Univ, Brain Res Ctr, Hsinchu, Taiwan
[6] Natl Yang Ming Chiao Tung Univ, Coll Med Device Innovat, Translat Ctr, Hsinchu, Taiwan
关键词
Aorta segmentation; Computed tomography; Convolutional neural network; Medical image analysis;
D O I
10.1007/s40846-024-00881-9
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
PurposeThis systematic review and meta-analysis was conducted to evaluate the usefulness of deep learning (DL) models for aorta segmentation in computed tomography (CT) images.MethodsAdhering to 2020 PRISMA guidelines, we systematically searched PubMed, Embase, and Web of Science for studies published up to March 13, 2024, that used DL models for aorta segmentation in adults' chest CT images. We excluded studies that did not use DL models, involved nonhuman subjects or aortic diseases (aneurysms and dissections), or lacked essential data for meta-analysis. Segmentation performance was evaluated primarily in terms of Dice scores. Subgroup analyses were performed to identify variations related to geographical location and methodology.ResultsOur review of 16 studies indicated that DL models achieve high segmentation accuracy, with a pooled Dice score of 96%. We further noted geographical variations in model performance but no significant publication bias, according to the Egger test.ConclusionDL models facilitate aorta segmentation in CT images, and they can therefore guide accurate, efficient, and standardized diagnosis and treatment planning for cardiovascular diseases. Future studies should address the current challenges to enhance model generalizability and evaluate clinical benefits and thus expand the application of DL models in clinical practice.
引用
收藏
页码:489 / 498
页数:10
相关论文
共 39 条
[1]   Automatic segmentation of multiple cardiovascular structures from cardiac computed tomography angiography images using deep learning [J].
Baskaran, Lohendran ;
Al'Aref, Subhi J. ;
Maliakal, Gabriel ;
Lee, Benjamin C. ;
Xu, Zhuoran ;
Choi, Jeong W. ;
Lee, Sang-Eun ;
Sung, Ji Min ;
Lin, Fay Y. ;
Dunham, Simon ;
Mosadegh, Bobak ;
Kim, Yong-Jin ;
Gottlieb, Ilan ;
Lee, Byoung Kwon ;
Chun, Eun Ju ;
Cademartiri, Filippo ;
Maffei, Erica ;
Marques, Hugo ;
Shin, Sanghoon ;
Choi, Jung Hyun ;
Chinnaiyan, Kavitha ;
Hadamitzky, Martin ;
Conte, Edoardo ;
Andreini, Daniele ;
Pontone, Gianluca ;
Budoff, Matthew J. ;
Leipsic, Jonathon A. ;
Raff, Gilbert L. ;
Virmani, Renu ;
Samady, Habib ;
Stone, Peter H. ;
Berman, Daniel S. ;
Narula, Jagat ;
Bax, Jeroen J. ;
Chang, Hyuk-Jae ;
Min, James K. ;
Shaw, Leslee J. .
PLOS ONE, 2020, 15 (05)
[2]  
Borenstein M. H., 2009, Introduction to meta-Analysis, P107, DOI [DOI 10.1002/9780470743386.CH13, DOI 10.1002/9780470743386.CH16, https://doi.org/10.1002/9780470743386.ch16, 10.1002/9780470743386.ch16]
[3]   Meta-Analysis and Subgroups [J].
Borenstein, Michael ;
Higgins, Julian P. T. .
PREVENTION SCIENCE, 2013, 14 (02) :134-143
[4]   Deep learning from dual-energy information for whole-heart segmentation in dual-energy and single-energy non-contrast-enhanced cardiac CT [J].
Bruns, Steffen ;
Wolterink, Jelmer M. ;
Takx, Richard A. P. ;
van Hamersvelt, Robbert W. ;
Sucha, Dominika ;
Viergever, Max A. ;
Leiner, Tim ;
Isgum, Ivana .
MEDICAL PHYSICS, 2020, 47 (10) :5048-5060
[5]   Fully automatic volume segmentation using deep learning approaches to assess aneurysmal sac evolution after infrarenal endovascular aortic repair [J].
Caradu, Caroline ;
Pouncey, Anna-Louise ;
Lakhlifi, Emilie ;
Brunet, Celine ;
Berard, Xavier ;
Ducasse, Eric .
JOURNAL OF VASCULAR SURGERY, 2022, 76 (03) :620-+
[6]   Deep Learning for Cardiac Image Segmentation: A Review [J].
Chen, Chen ;
Qin, Chen ;
Qiu, Huaqi ;
Tarroni, Giacomo ;
Duan, Jinming ;
Bai, Wenjia ;
Rueckert, Daniel .
FRONTIERS IN CARDIOVASCULAR MEDICINE, 2020, 7
[7]   An end-to-end approach to segmentation in medical images with CNN and posterior-CRF [J].
Chen, Shuai ;
Gamechi, Zahra Sedghi ;
Dubost, Florian ;
van Tulder, Gijs ;
de Bruijne, Marleen .
MEDICAL IMAGE ANALYSIS, 2022, 76
[8]   Bias in meta-analysis detected by a simple, graphical test [J].
Egger, M ;
Smith, GD ;
Schneider, M ;
Minder, C .
BMJ-BRITISH MEDICAL JOURNAL, 1997, 315 (7109) :629-634
[9]   3D Automatic Segmentation of Aortic Computed Tomography Angiography Combining Multi-View 2D Convolutional Neural Networks [J].
Fantazzini, Alice ;
Esposito, Mario ;
Finotello, Alice ;
Auricchio, Ferdinando ;
Pane, Bianca ;
Basso, Curzio ;
Spinella, Giovanni ;
Conti, Michele .
CARDIOVASCULAR ENGINEERING AND TECHNOLOGY, 2020, 11 (05) :576-586
[10]   Fusing 2D and 3D convolutional neural networks for the segmentation of aorta and coronary arteries from CT images [J].
Gu, Linyan ;
Cai, Xiao-Chuan .
ARTIFICIAL INTELLIGENCE IN MEDICINE, 2021, 121 (121)