Some congruences for 12-coloured generalized Frobenius partitions

被引:0
作者
Cui, Su-Ping [1 ]
Gu, Nancy S. S. [2 ]
Tang, Dazhao [3 ]
机构
[1] Qufu Normal Univ, Sch Math Sci, Qufu, Peoples R China
[2] Nankai Univ, Ctr Combinator & LPMC, Tianjin 300071, Peoples R China
[3] Chongqing Normal Univ, Sch Math Sci, Chongqing, Peoples R China
基金
中国国家自然科学基金;
关键词
congruences; generalized Frobenius partitions; generating functions; integer matrix exact covering systems; parameterized identities; RAMANUJAN-TYPE CONGRUENCES; MODULO POWERS; PROOF; SELLERS; ANDREWS;
D O I
10.1017/S0013091524000294
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In his 1984 AMS Memoir, Andrews introduced the family of functions $c\phi_k(n)$, the number of k-coloured generalized Frobenius partitions of n. In 2019, Chan, Wang and Yang systematically studied the arithmetic properties of $\textrm{C}\Phi_k(q)$ for $2\leq k\leq17$ by utilizing the theory of modular forms, where $\textrm{C}\Phi_k(q)$ denotes the generating function of $c\phi_k(n)$. In this paper, we first establish another expression of $\textrm{C}\Phi_{12}(q)$ with integer coefficients, then prove some congruences modulo small powers of 3 for $c\phi_{12}(n)$ by using some parameterized identities of theta functions due to A. Alaca, S. Alaca and Williams. Finally, we conjecture three families of congruences modulo powers of 3 satisfied by $c\phi_{12}(n)$.
引用
收藏
页码:778 / 793
页数:16
相关论文
共 41 条
  • [1] On the two-dimensional theta functions of the Borweins
    Alaca, Ayse
    Alaca, Saban
    Williams, Kenneth S.
    [J]. ACTA ARITHMETICA, 2006, 124 (02) : 177 - 195
  • [2] ANDREWS GE, 1984, MEM AM MATH SOC, V49, P1
  • [3] Generalized Frobenius partitions with 6 colors
    Baruah, Nayandeep Deka
    Sarmah, Bipul Kumar
    [J]. RAMANUJAN JOURNAL, 2015, 38 (02) : 361 - 382
  • [4] Congruences for generalized Frobenius partitions with 4 colors
    Baruah, Nayandeep Deka
    Sarmah, Bipul Kumar
    [J]. DISCRETE MATHEMATICS, 2011, 311 (17) : 1892 - 1902
  • [5] Berndt B.C., 1985, RAMANUJANS NOTEBOOKS
  • [6] Integer Matrix Exact Covering Systems and Product Identities for Theta Functions
    Cao, Zhu
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2011, 2011 (19) : 4471 - 4514
  • [7] MODULAR FORMS AND k-COLORED GENERALIZED FROBENIUS PARTITIONS
    Chan, Heng Huat
    Wang, Liuquan
    Yang, Yifan
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 371 (03) : 2159 - 2205
  • [8] CONGRUENCES MODULO 5 AND 7 FOR 4-COLORED GENERALIZED FROBENIUS PARTITIONS
    Chan, Heng Huat
    Wang, Liuquan
    Yang, Yifan
    [J]. JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2017, 103 (02) : 157 - 176
  • [9] The method of constant terms and k-colored generalized Frobenius partitions
    Cui, Su-Ping
    Gu, Nancy S. S.
    Tang, Dazhao
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2024, 203
  • [10] Congruences modulo powers of 2 for generalized Frobenius partitions with six colors
    Cui, Su-Ping
    Gu, Nancy S. S.
    [J]. INTERNATIONAL JOURNAL OF NUMBER THEORY, 2019, 15 (06) : 1173 - 1181