3D FEM Heat Transfer Simulation of Grinding

被引:0
作者
Weber D. [1 ]
Kirsch B. [1 ]
da Silva E.J. [2 ]
Aurich J.C. [3 ]
机构
[1] Maschinenbau an der Technischen Universität Kaiserslautern, Germany
[2] University of São Paulo, Brazil
[3] Leibniz-Universität Hannover und der Colorado State University, Germany
来源
ZWF Zeitschrift fuer Wirtschaftlichen Fabrikbetrieb | 2022年 / 117卷 / 7-8期
基金
巴西圣保罗研究基金会;
关键词
Cryogenic Machining; FEM; Grinding; Heat Transfer Simulation; Simulation; Temperature Field Modeling;
D O I
10.1515/zwf-2022-1098
中图分类号
学科分类号
摘要
Cooling lubricants are used in grinding to minimize heat-related problems such as surface cracks, workpiece burn, lower fatigue life and tensile residual stresses. However, this results in considerable costs. An alternative is the cryogenic cooling. 3D FEM heat transfer simulations offer the possibility of temporal and local mapping of the temperature development in the workpiece and thus form the basis for assessing the suitability of cryogenic cooling strategies in grinding. The validation of these as well as required boundary conditions are presented here for dry surface grinding. © 2022 Walter de Gruyter GmbH, Berlin/Boston, Germany.
引用
收藏
页码:484 / 488
页数:4
相关论文
共 11 条
[1]  
Yao C., Wang T., Xiao W., Huang X., Ren J., Experimental Study on Grinding Force and Grinding Zemperature of Aermet 100 Steel in Surface Grinding, Journal of Materials Processing Technol, 214, pp. 2191-2199, (2014)
[2]  
Inasaki I., Tonshoff H. K., Howes T. D., Abrasive Machining in the Future, CIRP Annals – Manufacturing Technology, 42, pp. 723-732, (1993)
[3]  
Aurich J. C., Linke B., Hauschild M., Carrella M., Kirsch B., Sustainability of Abrasive Processes, CIRP Annals – Manufacturing Technology, 62, pp. 653-672, (2013)
[4]  
Barczak L. M., Batako A. D. L., Morgan M. N., A Study of Plane Surface Grinding under Minimum Quantity Lubrication (MQL) Conditions, International Journal of Machine Tools and Manufacture, 50, pp. 977-985, (2010)
[5]  
Weinert K., Inasaki I., Sutherland J. W., Wakabayashi T., Dry Machining and Minimum Quantity Lubrication, CIRP Annals – Manufacturing Technology, 53, pp. 511-537, (2004)
[6]  
Chattopadhyay A. B., Bose A., Chattopdhyay A. K., Improvements in Grinding Steels by Cryogenic Cooling, Precision Engineering, 7, pp. 93-98, (1985)
[7]  
Paul S., Chattopadhyay A. B., The Effect of Cryogenic Cooling on Grinding Forces, International Journal of Machine Tools and Manufacture, 36, pp. 63-72, (1996)
[8]  
Ramesh K., Yeo S. H., Zhong Z. W., Huang H., Ecological Grinding with Chilled Air as Coolant, Proceedings of the Institution of Mechanical Engineers, Part B. Journal of Engineering Manufacture, 217, pp. 409-419, (2003)
[9]  
Oliveira J. F. G., Silva E. J., Coelho R. T., Brozek L., Bottene A. C., Marcos G. P., Dry Grinding Process with Workpiece Precooling, CIRP Annals – Manufacturing Technology, 64, pp. 329-332, (2015)
[10]  
Malkin S., Guo C., Thermal Analysis of Grinding, CIRP Annals, 56, 2, pp. 760-782, (2007)