MINE: A method of multi-interaction heterogeneous information network embedding

被引:0
|
作者
Zhu D. [1 ]
Sun Y. [1 ]
Li X. [2 ]
Du H. [3 ]
Qu R. [2 ]
Yu P. [4 ]
Piao X. [1 ]
Higgs R. [5 ]
Cao N. [6 ]
机构
[1] School of Computer Science and Technology, Harbin Institute of Technology, Weihai
[2] Department of Mathematics, Harbin Institute of Technology, Weihai
[3] School of Astronautics, Harbin Institute of Technology, Harbin
[4] School of Information Science and Engineering, Hebei University of Science and Technology, Shijiazhuang
[5] School of Mathematics and Statistics, University College Dublin, Dublin
[6] School of Internet of Things and Software Technology, Wuxi Vocational College of Science and Technology, Wuxi
来源
Yu, Pingping (yppflx@hotmail.com) | 2020年 / Tech Science Press卷 / 63期
关键词
Data mining; Interactive network; Network embedding; Network representation learning;
D O I
10.32604/CMC.2020.010008
中图分类号
学科分类号
摘要
Interactivity is the most significant feature of network data, especially in social networks. Existing network embedding methods have achieved remarkable results in learning network structure and node attributes, but do not pay attention to the multi-interaction between nodes, which limits the extraction and mining of potential deep interactions between nodes. To tackle the problem, we propose a method called Multi-Interaction heterogeneous information Network Embedding (MINE). Firstly, we introduced the multi-interactions heterogeneous information network and extracted complex heterogeneous relation sequences by the multi-interaction extraction algorithm. Secondly, we use a well-designed multi-relationship network fusion model based on the attention mechanism to fuse multiple interactional relationships. Finally, applying a multitasking model makes the learned vector contain richer semantic relationships. A large number of practical experiments prove that our proposed method outperforms existing methods on multiple data sets. © 2020 Tech Science Press. All rights reserved.
引用
收藏
页码:1343 / 1356
页数:13
相关论文
共 50 条
  • [1] MINE: A Method of Multi-Interaction Heterogeneous Information Network Embedding
    Zhu, Dongjie
    Sun, Yundong
    Li, Xiaofang
    Du, Haiwen
    Qu, Rongning
    Yu, Pingping
    Piao, Xuefeng
    Higgs, Russell
    Cao, Ning
    CMC-COMPUTERS MATERIALS & CONTINUA, 2020, 63 (03): : 1343 - 1356
  • [2] Multi-view Dynamic Heterogeneous Information Network Embedding
    Zhang, Zhenghao
    Huang, Jianbin
    Tan, Qinglin
    COMPUTER JOURNAL, 2022, 65 (08): : 2016 - 2033
  • [3] HINE: Heterogeneous Information Network Embedding
    Chen, Yuxin
    Wang, Chenguang
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS (DASFAA 2017), PT I, 2017, 10177 : 180 - 195
  • [4] Heterogeneous Information Network Embedding for Recommendation
    Shi, Chuan
    Hu, Binbin
    Zhao, Wayne Xin
    Yu, Philip S.
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2019, 31 (02) : 357 - 370
  • [5] Embedding Heterogeneous Information Network in Hyperbolic Spaces
    Zhang, Yiding
    Wang, Xiao
    Liu, Nian
    Shi, Chuan
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2022, 16 (02)
  • [6] Heterogeneous Information Network Embedding for Mention Recommendation
    Yi, Feng
    Jiang, Bo
    Wu, Jianjun
    IEEE ACCESS, 2020, 8 : 91394 - 91404
  • [7] Heterogeneous Information Network Embedding With Adversarial Disentangler
    Wang, Ruijia
    Shi, Chuan
    Zhao, Tianyu
    Wang, Xiao
    Ye, Yanfang
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (02) : 1581 - 1593
  • [8] AHINE: Adaptive Heterogeneous Information Network Embedding
    Lin, Yucheng
    Hong, Huiting
    Yang, Xiaoqing
    Gong, Pinghua
    Li, Zang
    Ye, Jieping
    11TH IEEE INTERNATIONAL CONFERENCE ON KNOWLEDGE GRAPH (ICKG 2020), 2020, : 100 - 107
  • [9] Multi-Stage Network Embedding for Exploring Heterogeneous Edges
    Huang, Hong
    Song, Yu
    Ye, Fanghua
    Xie, Xing
    Shi, Xuanhua
    Jin, Hai
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2021, 15 (01)
  • [10] Multi-view Heterogeneous Network Embedding
    Du, Ouxia
    Zhang, Yujia
    Li, Xinyue
    Zhu, Junyi
    Zheng, Tanghu
    Li, Ya
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT II, 2022, 13369 : 3 - 15