Gradient Estimates for the CR Heat Equation on Closed Sasakian Manifolds

被引:0
作者
Zhao, Biqiang [1 ]
机构
[1] Fudan Univ, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
Gradient estimate; Sasakian manifold; Perelman-type entropy formula; CURVATURE-DIMENSION INEQUALITIES; HARNACK INEQUALITIES; YAU; BOUNDS; KERNEL;
D O I
10.1007/s12220-024-01681-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we obtain a CR version Li-Yau type gradient estimate for positive solutions of the CR heat equation on closed Sasakian manifolds. As its applications, we derive the Harnack inequality and upper bound estimate for the heat kernel. Finally, we obtain Perelman-type entropy formula for closed Sasakian manifolds.
引用
收藏
页数:17
相关论文
共 36 条
[1]  
Bakry D, 1999, REV MAT IBEROAM, V15, P143
[2]  
Bakry D, 2006, REV MAT IBEROAM, V22, P683
[3]   THE LI-YAU INEQUALITY AND APPLICATIONS UNDER A CURVATURE-DIMENSION CONDITION [J].
Bakry, Dominique ;
Bolley, Francois ;
Gentil, Ivan .
ANNALES DE L INSTITUT FOURIER, 2017, 67 (01) :397-421
[4]  
Bakry D, 2009, POTENTIAL THEORY AND STOCHASTICS IN ALBAC: AUREL CORNEA MEMORIAL VOLUME, CONFERENCE PROCEEDINGS, P1
[5]   Curvature-dimension inequalities and Ricci lower bounds for sub-Riemannian manifolds with transverse symmetries [J].
Baudoin, Fabrice ;
Garofalo, Nicola .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2017, 19 (01) :151-219
[6]   Curvature Dimension Inequalities and Subelliptic Heat Kernel Gradient Bounds on Contact Manifolds [J].
Baudoin, Fabrice ;
Wang, Jing .
POTENTIAL ANALYSIS, 2014, 40 (02) :163-193
[7]   Matrix Li-Yau-Hamilton estimates for the heat equation on Kahler manifolds [J].
Cao, HD ;
Ni, L .
MATHEMATISCHE ANNALEN, 2005, 331 (04) :795-807
[8]   GRADIENT ESTIMATES, HARNACK INEQUALITIES AND ESTIMATES FOR HEAT KERNELS OF THE SUM OF SQUARES OF VECTOR-FIELDS [J].
CAO, HD ;
YAU, ST .
MATHEMATISCHE ZEITSCHRIFT, 1992, 211 (03) :485-504
[9]   Linear Trace Li-Yau-Hamilton Inequality for the CR Lichnerowicz-Laplacian Heat Equation [J].
Chang, Shu-Cheng ;
Chang, Ting-Hui ;
Fan, Yen-Wen .
JOURNAL OF GEOMETRIC ANALYSIS, 2015, 25 (02) :783-819
[10]  
Chang SC, 2011, J DIFFER GEOM, V89, P185, DOI 10.4310/jdg/1324477409