A review on charged-particle transport modeling for laser direct-drive fusion

被引:6
作者
Hu, S. X. [1 ,2 ,3 ]
Nichols, K. A. [1 ,2 ]
Shaffer, N. R. [1 ]
Arnold, B. [1 ]
White, A. J. [4 ]
Collins, L. A. [4 ]
Karasiev, V. V. [1 ]
Zhang, S. [1 ]
Goncharov, V. N. [1 ,3 ]
Shah, R. C. [1 ]
Mihaylov, D. I. [1 ]
Jiang, S. [5 ]
Ping, Y. [5 ]
机构
[1] Univ Rochester, Lab Laser Energet, 250 East River Rd, Rochester, NY 14623 USA
[2] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA
[3] Univ Rochester, Dept Mech Engn, Rochester, NY 14627 USA
[4] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
[5] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
关键词
EQUATION-OF-STATE; ELECTRON-TRANSPORT; THERMAL CONDUCTION; ENERGY-LOSS; DENSE; POLYSTYRENE; PLASMAS; IMPLEMENTATION; DEUTERIUM; VELOCITY;
D O I
10.1063/5.0197969
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Inertial confinement fusion (ICF) with the laser-indirect-drive scheme has recently made a tremendous breakthrough recently after decades of intensive research effort. Taking this success to the next step, the ICF community is coming to a general consensus that laser direct-drive (LDD) fusion might be the viable way for enabling inertial fusion energy (IFE) and high-gain targets for other applications. Designing and understanding LDD fusion targets heavily rely on radiation-hydrodynamic code simulations, in which charged-particle transport plays an essential role in modeling laser-target energy coupling and bootstrap heating of fusion-produced alpha-particles. To better simulate charged-particle transport in LDD targets, over the past four decades the plasma physics community has advanced transport calculations from simple plasma physics models to sophisticated computations based on first-principles methods. In this review, we give an overview of the current status of charged-particle transport modeling for LDD fusion, including what challenges we still face and the possible paths moving forward to advance transport modeling for ICF simulations. We hope this review will provide a summary of exciting challenges to stimulate young minds to enter the field, facilitate further progress in understanding warm-dense matter physics, and ultimately bridge toward the success of reliable LDD fusion designs for IFE and other high-gain ICF applications.
引用
收藏
页数:15
相关论文
共 114 条
[1]   Achievement of Target Gain Larger than Unity in an Inertial Fusion Experiment [J].
Abu-Shawareb, H. ;
Acree, R. ;
Adams, P. ;
Adams, J. ;
Addis, B. ;
Aden, R. ;
Adrian, P. ;
Afeyan, B. B. ;
Aggleton, M. ;
Aghaian, L. ;
Aguirre, A. ;
Aikens, D. ;
Akre, J. ;
Albert, F. ;
Albrecht, M. ;
Albright, B. J. ;
Albritton, J. ;
Alcala, J. ;
Alday, C., Jr. ;
Alessi, D. A. ;
Alexander, N. ;
Alfonso, J. ;
Alfonso, N. ;
Alger, E. ;
Ali, S. J. ;
Ali, Z. A. ;
Allen, A. ;
Alley, W. E. ;
Amala, P. ;
Amendt, P. A. ;
Amick, P. ;
Ammula, S. ;
Amorin, C. ;
Ampleford, D. J. ;
Anderson, R. W. ;
Anklam, T. ;
Antipa, N. ;
Appelbe, B. ;
Aracne-Ruddle, C. ;
Araya, E. ;
Archuleta, T. N. ;
Arend, M. ;
Arnold, P. ;
Arnold, T. ;
Arsenlis, A. ;
Asay, J. ;
Atherton, L. J. ;
Atkinson, D. ;
Atkinson, R. ;
Auerbach, M. .
PHYSICAL REVIEW LETTERS, 2024, 132 (06)
[2]   Lawson Criterion for Ignition Exceeded in an Inertial Fusion Experiment [J].
Abu-Shawareb, H. ;
Acree, R. ;
Adams, P. ;
Adams, J. ;
Addis, B. ;
Aden, R. ;
Adrian, P. ;
Afeyan, B. B. ;
Aggleton, M. ;
Aghaian, L. ;
Aguirre, A. ;
Aikens, D. ;
Akre, J. ;
Albert, F. ;
Albrecht, M. ;
Albright, B. J. ;
Albritton, J. ;
Alcala, J. ;
Alday, C., Jr. ;
Alessi, D. A. ;
Alexander, N. ;
Alfonso, J. ;
Alfonso, N. ;
Alger, E. ;
Ali, S. J. ;
Ali, Z. A. ;
Alley, W. E. ;
Amala, P. ;
Amendt, P. A. ;
Amick, P. ;
Ammula, S. ;
Amorin, C. ;
Ampleford, D. J. ;
Anderson, R. W. ;
Anklam, T. ;
Antipa, N. ;
Appelbe, B. ;
Aracne-Ruddle, C. ;
Araya, E. ;
Arend, M. ;
Arnold, P. ;
Arnold, T. ;
Asay, J. ;
Atherton, L. J. ;
Atkinson, D. ;
Atkinson, R. ;
Auerbach, J. M. ;
Austin, B. ;
Auyang, L. ;
Awwal, A. S. .
PHYSICAL REVIEW LETTERS, 2022, 129 (07)
[3]   RAYLEIGH-TAYLOR INSTABILITY AND LASER-PELLET FUSION [J].
BODNER, SE .
PHYSICAL REVIEW LETTERS, 1974, 33 (13) :761-764
[4]   Direct-drive laser fusion: Status and prospects [J].
Bodner, SE ;
Colombant, DG ;
Gardner, JH ;
Lehmberg, RH ;
Obenschain, SP ;
Phillips, L ;
Schmitt, AJ ;
Sethian, JD ;
McCrory, RL ;
Seka, W ;
Verdon, CP ;
Knauer, JP ;
Afeyan, BB ;
Powell, HT .
PHYSICS OF PLASMAS, 1998, 5 (05) :1901-1918
[5]   Initial performance results of the OMEGA laser system [J].
Boehly, TR ;
Brown, DL ;
Craxton, RS ;
Keck, RL ;
Knauer, JP ;
Kelly, JH ;
Kessler, TJ ;
Kumpan, SA ;
Loucks, SJ ;
Letzring, SA ;
Marshall, FJ ;
McCrory, RL ;
Morse, SFB ;
Seka, W ;
Soures, JM ;
Verdon, CP .
OPTICS COMMUNICATIONS, 1997, 133 (1-6) :495-506
[6]   Charged particle motion in a highly ionized plasma [J].
Brown, LS ;
Preston, DL ;
Singleton, RL .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2005, 410 (04) :237-333
[7]   THERMAL CONDUCTION IN LASER FUSION [J].
BRYSK, H ;
CAMPBELL, PM ;
HAMMERLING, P .
PLASMA PHYSICS AND CONTROLLED FUSION, 1975, 17 (06) :473-484
[8]   Kubo-Greenwood electrical conductivity formulation and implementation for projector augmented wave datasets [J].
Calderin, L. ;
Karasiev, V. V. ;
Trickey, S. B. .
COMPUTER PHYSICS COMMUNICATIONS, 2017, 221 :118-142
[9]   The National Ignition Facility - applications for inertial fusion energy and high-energy-density science [J].
Campbell, EM ;
Hogan, WJ .
PLASMA PHYSICS AND CONTROLLED FUSION, 1999, 41 :B39-B56
[10]   High-gain direct-drive target design for the Laser Megajoule [J].
Canaud, B ;
Fortin, X ;
Garaude, F ;
Meyer, C ;
Philippe, F ;
Temporal, M ;
Atzeni, S ;
Schiavi, A .
NUCLEAR FUSION, 2004, 44 (10) :1118-1129