Integrated Microprism and Microelectrode Array for Simultaneous Electrophysiology and Two-Photon Imaging across All Cortical Layers

被引:0
|
作者
Yang, Qianru [1 ,2 ,3 ,4 ]
Wu, Bingchen [1 ,2 ,3 ]
Castagnola, Elisa [1 ,5 ]
Pwint, May Yoon [1 ,2 ,3 ]
Williams, Nathaniel P. [1 ,2 ,3 ]
Vazquez, Alberto L. [2 ,3 ,6 ,7 ]
Cui, Xinyan Tracy [1 ,2 ,3 ,7 ]
机构
[1] Univ Pittsburgh, Dept Bioengn, Pittsburgh, PA 15260 USA
[2] Univ Pittsburgh, Ctr Neural Basis Cognit, Pittburgh, PA 15213 USA
[3] Carnegie Mellon Univ, Pittburgh, PA 15213 USA
[4] Stanford Univ, Sch Med, Stanford, CA 94305 USA
[5] Louisiana Tech Univ, Biomed Engn Dept, Ruston, LA 71272 USA
[6] Univ Pittsburgh, Dept Radiol, Pittsburgh, PA 15260 USA
[7] Univ Pittsburgh, McGowan Inst Regenerat Med, Pittsburgh, PA 15219 USA
关键词
calcium imaging; electrophysiology; microprism; microstimulation; two-photon microscopy; ELECTRICAL-STIMULATION; AWAKE MICE; NEURONS; CALCIUM; SU-8; ORGANIZATION; DISCHARGE; TISSUE; LIGHT; EYE;
D O I
10.1002/adhm.202302362
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Cerebral neural electronics play a crucial role in neuroscience research with increasing translational applications such as brain-computer interfaces for sensory input and motor output restoration. While widely utilized for decades, the understanding of the cellular mechanisms underlying this technology remains limited. Although two-photon microscopy (TPM) has shown great promise in imaging superficial neural electrodes, its application to deep-penetrating electrodes is technically difficult. Here, a novel device integrating transparent microelectrode arrays with glass microprisms, enabling electrophysiology recording and stimulation alongside TPM imaging across all cortical layers in a vertical plane, is introduced. Tested in Thy1-GCaMP6 mice for over 4 months, the integrated device demonstrates the capability for multisite electrophysiological recording/stimulation and simultaneous TPM calcium imaging. As a proof of concept, the impact of microstimulation amplitude, frequency, and depth on neural activation patterns is investigated using the setup. With future improvements in material stability and single unit yield, this multimodal tool greatly expands integrated electrophysiology and optical imaging from the superficial brain to the entire cortical column, opening new avenues for neuroscience research and neurotechnology development. A 16-channel transparent microelectrode array is integrated with a microprism to allow simultaneous electrophysiology and optical imaging throughout all cortical layers. The authors achieved single-unit recording, microstimulation, and simultaneous two-photon imaging of the whole cortical column in awake mice for over 4 months. Concurrent microstimulation and two-photon imaging reveal the depth dependency of various stimulation parameters. image
引用
收藏
页数:15
相关论文
共 38 条
  • [1] A modular two-photon microscope for simultaneous imaging of distant cortical areas in vivo
    Voigt, Fabian F.
    Chen, Jerry L.
    Krueppel, Roland
    Helmchen, Fritjof
    MULTIPHOTON MICROSCOPY IN THE BIOMEDICAL SCIENCES XV, 2015, 9329
  • [2] TWO-PHOTON IMAGING AND THE ACTIVATION OF CORTICAL NEURONS
    Tehovnik, E. J.
    Slocum, W. M.
    NEUROSCIENCE, 2013, 245 : 12 - 25
  • [3] Simultaneous multi-electrode array recording and two-photon calcium imaging of neural activity
    Shew, Woodrow L.
    Bellay, Timothy
    Plenz, Dietmar
    JOURNAL OF NEUROSCIENCE METHODS, 2010, 192 (01) : 75 - 82
  • [4] GRINtrode: a neural implant for simultaneous two-photon imaging and extracellular electrophysiology in freely moving animals
    McCullough, Connor M.
    Ramirez-Gordillo, Daniel
    Hall, Michael
    Futia, Gregory L.
    Moran, Andrew K.
    Gibson, Emily A.
    Restrepo, Diego
    NEUROPHOTONICS, 2022, 9 (04)
  • [5] Transparent arrays of bilayer-nanomesh microelectrodes for simultaneous electrophysiology and two-photon imaging in the brain
    Qiang, Yi
    Artoni, Pietro
    Seo, Kyung Jin
    Culaclii, Stanislav
    Hogan, Victoria
    Zhao, Xuanyi
    Zhong, Yiding
    Han, Xun
    Wang, Po-Min
    Lo, Yi-Kai
    Li, Yueming
    Patel, Henil A.
    Huang, Yifu
    Sambangi, Abhijeet
    Chu, Jung Soo, V
    Liu, Wentai
    Fagiolini, Michela
    Fang, Hui
    SCIENCE ADVANCES, 2018, 4 (09):
  • [6] Reconciling functional differences in populations of neurons recorded with two-photon imaging and electrophysiology
    Siegle, Joshua H.
    Ledochowitsch, Peter
    Jia, Xiaoxuan
    Millman, Daniel J.
    Ocker, Gabriel K.
    Caldejon, Shiella
    Casal, Linzy
    Cho, Andy
    Denman, Daniel J.
    Durand, Severine
    Groblewski, Peter A.
    Heller, Gregg
    Kato, India
    Kivikas, Sara
    Lecoq, Jerome
    Nayan, Chelsea
    Ngo, Kiet
    Nicovich, Philip R.
    North, Kat
    Ramirez, Tamina K.
    Swapp, Jackie
    Waughman, Xana
    Williford, Ali
    Olsen, Shawn R.
    Koch, Christof
    Buice, Michael A.
    de Vries, Saskia E. J.
    ELIFE, 2021, 10
  • [7] In-vivo across-scales two-photon microscopic imaging technique
    Chen Shuai
    Ren Lin
    Zhou Zhen-qiao
    Li Min
    Jia Hong-bo
    CHINESE OPTICS, 2022, 15 (06) : 1167 - 1181
  • [8] Water-Soluble Conjugated Polymers for Simultaneous Two-Photon Cell Imaging and Two-Photon Photodynamic Therapy
    Shen, Xiaoqin
    Li, Lin
    Chan, Agnes Chow Min
    Gao, Nengyue
    Yao, Shao Q.
    Xu, Qing-Hua
    ADVANCED OPTICAL MATERIALS, 2013, 1 (01): : 92 - 99
  • [9] Simultaneous two-photon activation and imaging of neural activity based on spectral-temporal modulation of supercontinuum light
    Liu, Yuan-Zhi
    Renteria, Carlos
    Courtney, Connor D.
    Ibrahim, Baher
    You, Sixian
    Chaney, Eric J.
    Barkalifa, Ronit
    Iyer, Rishyashring R.
    Zurauskas, Mantas
    Tu, Haohua
    Llano, Daniel A.
    Christian-Hinman, Catherine A.
    Boppart, Stephen A.
    NEUROPHOTONICS, 2020, 7 (04)
  • [10] Simultaneous two-photon calcium imaging at different depths with spatiotemporal multiplexing
    Cheng, Adrian
    Goncalves, J. Tiago
    Golshani, Peyman
    Arisaka, Katsushi
    Portera-Cailliau, Carlos
    NATURE METHODS, 2011, 8 (02) : 139 - U58