Geometric properties of generalized Bessel function of arbitrary order and degree

被引:0
作者
Kumari, Naveen [1 ]
Prajapat, Jugal Kishore [1 ]
机构
[1] Cent Univ Rajasthan, Dept Math, Ajmer 305817, Rajasthan, India
关键词
Bessel function; Analytic function; Starlike function; Convex function; CONVEXITY PROPERTIES; UNIVALENCE;
D O I
10.1007/s13370-024-01195-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Bessel function and its various generalizations have extensively been studied in various branches of applied mathematics and theoretical physics, including the Geometric Function Theory. In this paper, we study basic characteristics of Bessel functions of order mu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} and degree nu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu $$\end{document}. Among the results that we investigate are the results giving the characteristic properties of univalence, convexity and starlikeness. We further investigate the conditions under which the function L mu,nu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{\mu ,\nu }$$\end{document} are strongly convex and strongly starlike. Several corollaries are also mentioned depicting the usefulness of the main results, one of the Corollary providing improvement in a result for normalized Bessel function.
引用
收藏
页数:13
相关论文
共 10 条
[1]  
Baricz A, 2008, PUBL MATH-DEBRECEN, V73, P155
[2]   Starlikeness and convexity of generalized Bessel functions [J].
Baricz, Arpad ;
Ponnusamy, Saminathan .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2010, 21 (09) :641-653
[3]   On confluent hypergeometric functions and generalized Bessel functions [J].
Bohra, N. ;
Ravichandran, V. .
ANALYSIS MATHEMATICA, 2017, 43 (04) :533-545
[4]   On the Regular Integral Solutions of a Generalized Bessel Differential Equation [J].
Campos, L. M. B. C. ;
Moleiro, F. ;
Silva, M. J. S. ;
Paquim, J. .
ADVANCES IN MATHEMATICAL PHYSICS, 2018, 2018
[5]  
Choi J. H., 1996, Complex Variables Theory Appl., V31, P345
[7]   UNIVALENCE OF GAUSSIAN AND CONFLUENT HYPERGEOMETRIC-FUNCTIONS [J].
MILLER, SS ;
MOCANU, PT .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 110 (02) :333-342
[8]   DIFFERENTIAL SUBORDINATIONS AND INEQUALITIES IN THE COMPLEX-PLANE [J].
MILLER, SS ;
MOCANU, PT .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1987, 67 (02) :199-211
[9]   Univalence and convexity properties for Gaussian hypergeometric functions [J].
Ponnusamy, S ;
Vuorinen, M .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2001, 31 (01) :327-353
[10]   Close-to-convexity properties of Gaussian hypergeometric functions [J].
Ponnusamy, S .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1998, 88 (02) :327-337