共 165 条
[91]
Kumawat M K, Parlikar C, Alam M Z, Et al., Type-I hot corrosion of Ni-base superalloy CM247LC in presence of molten Na<sub>2</sub>SO<sub>4</sub> film, Metallurgical and Materials Transactions A, 52, pp. 378-393, (2021)
[92]
Kupkovits R A., Thermomechanical fatigue behavior of the directionally-solidified nickel-base superalloy CM247LC [M], (2009)
[93]
Larrosa N O, Akid R, Ainsworth R A, Corrosion-fatigue: a review of damage tolerance models, International Materials Reviews, 63, pp. 283-308, (2018)
[94]
Li S-X, Akid R., Corrosion fatigue life prediction of a steel shaft material in seawater, Engineering Failure Analysis, 34, pp. 324-334, (2013)
[95]
Li S, Yang X, Qi H, Et al., Low-temperature hot corrosion effects on the low-cycle fatigue lifetime and cracking behaviors of a powder metallurgy Ni-based superalloy, International Journal of Fatigue, 116, pp. 334-343, (2018)
[96]
Li S, Yang X, Xu G, Et al., Influence of the different salt deposits on the fatigue behavior of a directionally solidified nickel-based superalloy, International Journal of Fatigue, 84, pp. 91-96, (2016)
[97]
Li Z, Li S, Xu G, Et al., The framework of hot corrosion fatigue life estimation of a PM superalloy using notch fatigue methodology combined with pit evolution, International Journal of Fatigue, 153, (2021)
[98]
Liao M, Bellinger N C, Komorowski J P., Corrosion Fatigue Analysis of AN F-18 LONGERON, (2010)
[99]
Liu M, Luo S, Shen Y, Et al., Corrosion fatigue crack propagation behavior of S135 high–strength drill pipe steel in H2S environment, Engineering Failure Analysis, 97, pp. 493-505, (2019)
[100]
Lukaszewicz M, Zhou S, Turnbull A., Novel concepts on the growth of corrosion fatigue small and short cracks, Diffusion & Defect Data. Solid State Data Part B. Solid State Phenomena, 66, pp. 1488-1490, (2015)