SARS-CoV-2 infection induces thymic atrophy mediated by IFN-γ in hACE2 transgenic mice

被引:4
作者
Rizvi, Zaigham Abbas [1 ,2 ]
Sadhu, Srikanth [1 ,2 ]
Dandotiya, Jyotsna [1 ,2 ]
Sharma, Puja [3 ]
Binayke, Akshay [1 ,2 ]
Singh, Virendra [1 ,2 ]
Das, Vinayaka [1 ,2 ]
Khatri, Ritika [4 ]
Kumar, Rajesh [4 ]
Samal, Sweety [4 ]
Kalia, Manjula [3 ]
Awasthi, Amit [1 ,2 ]
机构
[1] NCR Biotech Sci Cluster, Translat Hlth Sci & Technol Inst, Infect & Immunol Ctr, Immunobiol Lab, Faridabad, Haryana, India
[2] NCR Biotech Sci Cluster, Translat Hlth Sci & Technol Inst, Immunol Core Lab, Faridabad, Haryana, India
[3] NCR Biotech Sci Cluster, Reg Ctr Biotechnol, Faridabad, Haryana, India
[4] NCR Biotech Sci Cluster, Translat Hlth Sci & Technol Inst, Infect & Immunol Ctr, Faridabad, Haryana, India
关键词
COVID-19; Omicron; SARS-CoV-2; T-cell maturation; Thymic atrophy; T-cells; INTERFERON-GAMMA; CORONAVIRUS; LYMPHOCYTES; MECHANISMS; GRANZYMES; SELECTION; COVID-19; PATHWAY; DISEASE; DEATH;
D O I
10.1002/eji.202350624
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Pathogenic infections cause thymic atrophy, perturb thymic T-cell development, and alter immunological response. Previous studies reported dysregulated T-cell function and lymphopenia in coronavirus disease-19 (COVID-19). However, immunopathological changes in the thymus associated with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection have not been elucidated. Here, we report that SARS-CoV-2 infects thymocytes, and induces CD4+CD8+ (double positive; DP) T-cell apoptosis leading to thymic atrophy and loss of peripheral TCR repertoire in K18-hACE2 transgenic mice. Infected thymus led to increased CD44+CD25- T-cells, indicating an early arrest in the T-cell maturation pathway. Thymic atrophy was notably higher in male hACE2-Tg mice than in females and involved an upregulated de-novo synthesis pathway of thymic glucocorticoid. Further, IFN-gamma was crucial for thymic atrophy, as anti-IFN-gamma -antibody neutralization blunted thymic involution. Therapeutic use of Remdesivir also rescued thymic atrophy. While the Omicron variant and its sub-lineage BA.5 variant caused marginal thymic atrophy, the delta variant of SARS-CoV-2 exhibited severe thymic atrophy characterized by severely depleted DP T-cells. Recently characterized broadly SARS-CoV-2 neutralizing monoclonal antibody P4A2 was able to rescue thymic atrophy and restore the thymic maturation pathway of T-cells. Together, we report SARS-CoV-2-associated thymic atrophy resulting from impaired T-cell maturation pathway which may contribute to dyregulated T cell response during COVID-19. In the healthy state condition, T-cell maturation occurs in the thymus leading to the exit of matured T cells in the periphery. In infected mice, SARS-CoV-2 infection of the thymocytes results in increased apoptosis of thymocytes which leads to thymic atrophy, and loss of peripheral TCR repertoire. image
引用
收藏
页数:20
相关论文
共 70 条
[1]   Profound dysregulation of T cell homeostasis and function in patients with severe COVID-19 [J].
Adamo, Sarah ;
Chevrier, Stephane ;
Cervia, Carlo ;
Zurbuchen, Yves ;
Raeber, Miro E. ;
Yang, Liliane ;
Sivapatham, Sujana ;
Jacobs, Andrea ;
Baechli, Esther ;
Rudiger, Alain ;
Stussi-Helbling, Melina ;
Huber, Lars C. ;
Schaer, Dominik J. ;
Bodenmiller, Bernd ;
Boyman, Onur ;
Nilsson, Jakob .
ALLERGY, 2021, 76 (09) :2866-2881
[2]   IFNγ and iNOS-Mediated Alterations in the Bone Marrow and Thymus and Its Impact on Mycobacterium avium-Induced Thymic Atrophy [J].
Barreira-Silva, Palmira ;
Melo-Miranda, Rita ;
Nobrega, Claudia ;
Roque, Susana ;
Serre-Miranda, Claudia ;
Borges, Margarida ;
Armada, Gisela ;
de Sa Calcada, Daniela ;
Behar, Samuel M. ;
Appelberg, Rui ;
Correia-Neves, Margarida .
FRONTIERS IN IMMUNOLOGY, 2021, 12
[3]  
Beigel JH, 2020, NEW ENGL J MED, V383, P1813, DOI [10.1056/NEJMoa2007764, 10.1056/NEJMc2022236]
[4]   COVID-19 immune signatures reveal stable antiviral T cell function despite declining humoral responses [J].
Bonifacius, Agnes ;
Tischer-Zimmermann, Sabine ;
Dragon, Anna C. ;
Gussarow, Daniel ;
Vogel, Alexander ;
Krettek, Ulrike ;
Goedecke, Nina ;
Yilmaz, Mustafa ;
Kraft, Anke R. M. ;
Hoeper, Marius M. ;
Pink, Isabell ;
Schmidt, Julius J. ;
Li, Yang ;
Welte, Tobias ;
Maecker-Kolhoff, Britta ;
Martens, Joerg ;
Berger, Marc Moritz ;
Lobenwein, Corinna ;
Stankov, Metodi, V ;
Cornberg, Markus ;
David, Sascha ;
Behrens, Georg M. N. ;
Witzke, Oliver ;
Blasczyk, Rainer ;
Eiz-Vesper, Britta .
IMMUNITY, 2021, 54 (02) :340-+
[5]   Potent neutralizing antibodies from COVID-19 patients define multiple targets of vulnerability [J].
Brouwer, Philip J. M. ;
Caniels, Tom G. ;
van der Straten, Karlijn ;
Snitselaar, Jonne L. ;
Aldon, Yoann ;
Bangaru, Sandhya ;
Torres, Jonathan L. ;
Okba, Nisreen M. A. ;
Claireaux, Mathieu ;
Kerster, Gius ;
Bentlage, Arthur E. H. ;
van Haaren, Marlies M. ;
Guerra, Denise ;
Burger, Judith A. ;
Schermer, Edith E. ;
Verheul, Kirsten D. ;
van der Velde, Niels ;
van der Kooi, Alex ;
van Schooten, Jelle ;
van Breemen, Marielle J. ;
Bijl, Tom P. L. ;
Sliepen, Kwinten ;
Aartse, Aafke ;
Derking, Ronald ;
Bontjer, Ilja ;
Kootstra, Neeltje A. ;
Wiersinga, W. Joost ;
Vidarsson, Gestur ;
Haagmans, Bart L. ;
Ward, Andrew B. ;
de Bree, Godelieve J. ;
Sanders, Rogier W. ;
van Gils, Marit J. .
SCIENCE, 2020, 369 (6504) :643-+
[6]   Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity [J].
Cantuti-Castelvetri, Ludovico ;
Ojha, Ravi ;
Pedro, Liliana D. ;
Djannatian, Minou ;
Franz, Jonas ;
Kuivanen, Suvi ;
van der Meer, Franziska ;
Kallio, Katri ;
Kaya, Tugberk ;
Anastasina, Maria ;
Smura, Teemu ;
Levanov, Lev ;
Szirovicza, Leonora ;
Tobi, Allan ;
Kallio-Kokko, Hannimari ;
Osterlund, Pamela ;
Joensuu, Merja ;
Meunier, Frederic A. ;
Butcher, Sarah J. ;
Winkler, Martin Sebastian ;
Mollenhauer, Brit ;
Helenius, Ari ;
Gokce, Ozgun ;
Teesalu, Tambet ;
Hepojoki, Jussi ;
Vapalahti, Olli ;
Stadelmann, Christine ;
Balistreri, Giuseppe ;
Simons, Mikael .
SCIENCE, 2020, 370 (6518) :856-+
[7]   Simulation of the Clinical and Pathological Manifestations of Coronavirus Disease 2019 (COVID-19) in a Golden Syrian Hamster Model: Implications for Disease Pathogenesis and Transmissibility [J].
Chan, Jasper Fuk-Woo ;
Zhang, Anna Jinxia ;
Yuan, Shuofeng ;
Poon, Vincent Kwok-Man ;
Chan, Chris Chung-Sing ;
Lee, Andrew Chak-Yiu ;
Chan, Wan-Mui ;
Fan, Zhimeng ;
Tsoi, Hoi-Wah ;
Wen, Lei ;
Liang, Ronghui ;
Cao, Jianli ;
Chen, Yanxia ;
Tang, Kaiming ;
Luo, Cuiting ;
Cai, Jian-Piao ;
Kok, Kin-Hang ;
Chu, Hin ;
Chan, Kwok-Hung ;
Sridhar, Siddharth ;
Chen, Zhiwei ;
Chen, Honglin ;
To, Kelvin Kai-Wang ;
Yuen, Kwok-Yung .
CLINICAL INFECTIOUS DISEASES, 2020, 71 (09) :2428-2446
[8]   Thymus-derived glucocorticoids mediate androgen effects on thymocyte homeostasis [J].
Chen, Yongwen ;
Qiao, Shengjun ;
Tuckermann, Jan ;
Okret, Sam ;
Jondal, Mikael .
FASEB JOURNAL, 2010, 24 (12) :5043-5051
[9]  
Chiang K., 2020, THYMIC DYSFUNCTION A, DOI [10.2139/ssrn.3649836, DOI 10.2139/SSRN.3649836]
[10]   COVID-19 and Cardiovascular Disease From Bench to Bedside [J].
Chung, Mina K. ;
Zidar, David A. ;
Bristow, Michael R. ;
Cameron, Scott J. ;
Chan, Timothy ;
Harding, Clifford V., III ;
Kwon, Deborah H. ;
Singh, Tamanna ;
Tilton, John C. ;
Tsai, Emily J. ;
Tucker, Nathan R. ;
Barnard, John ;
Loscalzo, Joseph .
CIRCULATION RESEARCH, 2021, 128 (08) :1214-1236