The Robust Chromatic Number of Graphs

被引:2
作者
Bacso, Gabor [1 ]
Patkos, Balazs [2 ]
Tuza, Zsolt [2 ,3 ]
Vizer, Mate [4 ]
机构
[1] Inst Comp Sci & Control, Budapest, Hungary
[2] HUN REN Alfred Renyi Inst Math, Budapest, Hungary
[3] Univ Pannonia, Veszprem, Hungary
[4] Budapest Univ Technol & Econ, Budapest, Hungary
关键词
Chromatic number; 1-removed graph; Graph parameters;
D O I
10.1007/s00373-024-02817-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A 1-removed subgraph Gf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_f$$\end{document} of a graph G=(V,E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G=(V,E)$$\end{document} is obtained by (i)selecting at most one edge f(v) for each vertex v is an element of V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v\in V$$\end{document}, such that v is an element of f(v)is an element of E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v\in f(v)\in E$$\end{document} (the mapping f:V -> E boolean OR{& empty;}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:V\rightarrow E \cup \{\varnothing \}$$\end{document} is allowed to be non-injective), and(ii)deleting all the selected edges f(v) from the edge set E of G.Proper vertex colorings of 1-removed subgraphs proved to be a useful tool for earlier research on some Tur & aacute;n-type problems. In this paper, we introduce a systematic investigation of the graph invariant 1-robust chromatic number, denoted as chi 1(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi _1(G)$$\end{document}. This invariant is defined as the minimum chromatic number chi(Gf)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi (G_f)$$\end{document} among all 1-removed subgraphs Gf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_f$$\end{document} of G. We also examine other standard graph invariants in a similar manner.
引用
收藏
页数:23
相关论文
共 16 条
[1]   The most vital nodes with respect to independent set and vertex cover [J].
Bazgan, Cristina ;
Toubaline, Sonia ;
Tuza, Zsolt .
DISCRETE APPLIED MATHEMATICS, 2011, 159 (17) :1933-1946
[2]   POINT-ARBORICITY OF A GRAPH [J].
CHARTRAND, G ;
KRONK, HV ;
WALL, CE .
ISRAEL JOURNAL OF MATHEMATICS, 1968, 6 (02) :169-+
[3]   THE MONADIC 2ND-ORDER LOGIC OF GRAPHS .1. RECOGNIZABLE SETS OF FINITE GRAPHS [J].
COURCELLE, B .
INFORMATION AND COMPUTATION, 1990, 85 (01) :12-75
[4]  
Cygan M., 2015, Parameterized algorithms, V5, DOI DOI 10.1007/978-3-319-21275-3
[5]   ON DEGREES OF VERTICES OF DIRECTED GRAPH [J].
HAKIMI, SL .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1965, 279 (04) :290-&
[6]  
HARARY F, 1970, ANN NY ACAD SCI, V175, P198, DOI 10.1111/j.1749-6632.1970.tb45132.x
[7]  
Kardos F, 2024, Arxiv, DOI arXiv:2401.08324
[8]  
Kemnitz A, 2018, ELECTRON J COMB, V25
[9]  
Kloks T., 1994, Treewidth. Computations and approximations, DOI 10.1007/BFb0045375
[10]  
Lovasz L., 1972, DISCRETE MATH, V2, P253, DOI DOI 10.1016/0012-365X(72)90006-4