On the Temporal Tweezing of Cavity Solitons

被引:0
作者
Rossi, Julia [1 ,2 ]
Chandramouli, Sathyanarayanan [3 ]
Carretero-Gonzalez, Ricardo [1 ,2 ]
Kevrekidis, Panayotis G. [3 ]
机构
[1] San Diego State Univ, Nonlinear Dynam Syst Grp, Computat Sci Res Ctr, San Diego, CA 92182 USA
[2] San Diego State Univ, Dept Math & Stat, San Diego, CA 92182 USA
[3] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA
基金
美国国家科学基金会;
关键词
Optical tweezers; Cavity solitons; Complex Ginzburg-Landau equation; Lugiato-Lefever equation; Non-conservative Lagrangian formulation; SLOW LIGHT; DYNAMICS; MANIPULATION; MODULATION;
D O I
10.1007/s44198-024-00193-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Motivated by the work of Jang et al., Nat Commun 6:7370 (2015), where the authors experimentally tweeze cavity solitons in a passive loop of optical fiber, we study the amenability to tweezing of cavity solitons as the properties of a localized tweezer are varied. The system is modeled by the Lugiato-Lefever equation, a variant of the complex Ginzburg-Landau equation. We produce an effective, localized, trapping tweezer potential by assuming a Gaussian phase-modulation of the holding beam. The potential for tweezing is then assessed as the total (temporal) displacement and speed of the tweezer are varied, and corresponding phase diagrams are presented. As the relative speed of the tweezer is increased we find two possible dynamical scenarios: successful tweezing and release of the cavity soliton. We also deploy a non-conservative variational approximation (NCVA) based on a Lagrangian description which reduces the original dissipative partial differential equation to a set of coupled ordinary differential equations for the cavity soliton parameters. We illustrate the ability of the NCVA to accurately predict the separatrix between successful and failed tweezing. This showcases the versatility of the NCVA to provide a low-dimensional description of the experimental realization of the temporal tweezing.
引用
收藏
页数:27
相关论文
共 51 条
[41]   Dynamics and manipulation of matter-wave solitons in optical superlattices [J].
Porter, MA ;
Kevrekidis, PG ;
Carretero-González, R ;
Frantzeskakis, DJ .
PHYSICS LETTERS A, 2006, 352 (03) :210-215
[42]  
Quarteroni A., 2006, Texts in Applied Mathematics
[43]  
Galley CR, 2014, Arxiv, DOI arXiv:1412.3082
[44]   Non-conservative variational approximation for nonlinear Schrodinger equations [J].
Rossi, J. ;
Carretero-Gonzalez, R. ;
Kevrekidis, P. G. .
EUROPEAN PHYSICAL JOURNAL PLUS, 2020, 135 (10)
[45]   On the spontaneous time-reversal symmetry breaking in synchronously-pumped passive Kerr resonators [J].
Rossi, J. ;
Carretero-Gonzalez, R. ;
Kevrekidis, P. G. ;
Haragus, M. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2016, 49 (45)
[46]   INTRAFIBER VISIBLE PULSE-COMPRESSION BY CROSS-PHASE MODULATION IN A BIREFRINGENT OPTICAL FIBER [J].
ROTHENBERG, JE .
OPTICS LETTERS, 1990, 15 (09) :495-497
[47]   Symmetry breaking in symmetric and asymmetric double-well potentials [J].
Theocharis, G. ;
Kevrekidis, P. G. ;
Frantzeskakis, D. J. ;
Schmelcher, P. .
PHYSICAL REVIEW E, 2006, 74 (05)
[48]   Slow and fast light in optical fibres [J].
Thevenaz, Luc .
NATURE PHOTONICS, 2008, 2 (08) :474-481
[49]   SUPPRESSION OF INTERACTIONS IN A PHASE-LOCKED SOLITON OPTICAL MEMORY [J].
WABNITZ, S .
OPTICS LETTERS, 1993, 18 (08) :601-603
[50]   Nonlinear optics of fibre event horizons [J].
Webb, Karen E. ;
Erkintalo, Miro ;
Xu, Yiqing ;
Broderick, Neil G. R. ;
Dudley, John M. ;
Genty, Goery ;
Murdoch, Stuart G. .
NATURE COMMUNICATIONS, 2014, 5