On the Temporal Tweezing of Cavity Solitons

被引:0
作者
Rossi, Julia [1 ,2 ]
Chandramouli, Sathyanarayanan [3 ]
Carretero-Gonzalez, Ricardo [1 ,2 ]
Kevrekidis, Panayotis G. [3 ]
机构
[1] San Diego State Univ, Nonlinear Dynam Syst Grp, Computat Sci Res Ctr, San Diego, CA 92182 USA
[2] San Diego State Univ, Dept Math & Stat, San Diego, CA 92182 USA
[3] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA
基金
美国国家科学基金会;
关键词
Optical tweezers; Cavity solitons; Complex Ginzburg-Landau equation; Lugiato-Lefever equation; Non-conservative Lagrangian formulation; SLOW LIGHT; DYNAMICS; MANIPULATION; MODULATION;
D O I
10.1007/s44198-024-00193-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Motivated by the work of Jang et al., Nat Commun 6:7370 (2015), where the authors experimentally tweeze cavity solitons in a passive loop of optical fiber, we study the amenability to tweezing of cavity solitons as the properties of a localized tweezer are varied. The system is modeled by the Lugiato-Lefever equation, a variant of the complex Ginzburg-Landau equation. We produce an effective, localized, trapping tweezer potential by assuming a Gaussian phase-modulation of the holding beam. The potential for tweezing is then assessed as the total (temporal) displacement and speed of the tweezer are varied, and corresponding phase diagrams are presented. As the relative speed of the tweezer is increased we find two possible dynamical scenarios: successful tweezing and release of the cavity soliton. We also deploy a non-conservative variational approximation (NCVA) based on a Lagrangian description which reduces the original dissipative partial differential equation to a set of coupled ordinary differential equations for the cavity soliton parameters. We illustrate the ability of the NCVA to accurately predict the separatrix between successful and failed tweezing. This showcases the versatility of the NCVA to provide a low-dimensional description of the experimental realization of the temporal tweezing.
引用
收藏
页数:27
相关论文
共 51 条
[11]  
Firth WJ, 2002, OPT PHOTONICS NEWS, V13, P54, DOI 10.1364/OPN.13.2.000054
[12]   Optical bullet holes: Robust controllable localized states of a nonlinear cavity [J].
Firth, WJ ;
Scroggie, AJ .
PHYSICAL REVIEW LETTERS, 1996, 76 (10) :1623-1626
[13]   Classical Mechanics of Nonconservative Systems [J].
Galley, Chad R. .
PHYSICAL REVIEW LETTERS, 2013, 110 (17)
[14]  
Galley Chad R., 2014, The principle of stationary nonconservative action for classical mechanics and field theories
[15]   The complex Ginzburg-Landau equation: an introduction [J].
Garcia-Morales, Vladimir ;
Krischer, Katharina .
CONTEMPORARY PHYSICS, 2012, 53 (02) :79-95
[16]   Generating and manipulating quantized vortices on-demand in a Bose-Einstein condensate: A numerical study [J].
Gertjerenken, B. ;
Kevrekidis, P. G. ;
Carretero-Gonzalez, R. ;
Anderson, B. P. .
PHYSICAL REVIEW A, 2016, 93 (02)
[17]   Bifurcation structure of dissipative solitons [J].
Gomila, Damia ;
Scroggie, A. J. ;
Firth, W. J. .
PHYSICA D-NONLINEAR PHENOMENA, 2007, 227 (01) :70-77
[18]   Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres [J].
Gorbach, A. V. ;
Skryabin, D. V. .
NATURE PHOTONICS, 2007, 1 (11) :653-657
[19]  
Grelu P., 2015, Nonlinear Optical Cavity Dynamics: From Microresonators to Fiber Lasers
[20]  
Grelu P, 2012, NAT PHOTONICS, V6, P84, DOI [10.1038/NPHOTON.2011.345, 10.1038/nphoton.2011.345]